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We formulate a quantum Monte Carlo(QMC) method for calculating the ground state of many-boson
systems. The method is based on a field-theoretical approach, and is closely related to existing fermion
auxiliary-field QMC methods which are applied in several fields of physics. The ground-state projection is
implemented as a branching random walk in the space of permanents consisting of identical single-particle
orbitals. Any single-particle basis can be used, and the method is in principle exact. We illustrate this method
with a trapped atomic boson gas, where the atoms interact via an attractive or repulsive contact two-body
potential. We choose as the single-particle basis a real-space grid. We compare with exact results in small
systems and arbitrarily sized systems of untrapped bosons with attractive interactions in one dimension, where
analytical solutions exist. We also compare with the corresponding Gross-Pitaevskii(GP) mean-field calcula-
tions for trapped atoms, and discuss the close formal relation between our method and the GP approach. Our
method provides a way to systematically improve upon GP while using the same framework, capturing
interaction and correlation effects with a stochastic, coherent ensemble of noninteracting solutions. We discuss
various algorithmic issues, including importance sampling and the back-propagation technique for computing
observables, and illustrate them with numerical studies. We show results for systems with up toN,400
bosons.
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I. INTRODUCTION

The study of many-body quantum systems has been a
very challenging research field for many years. Computa-
tional methods have often been the way of choice to extract
theoretical understanding on such systems. Most computa-
tional quantum-mechanical studies are based on simpler
mean-field theories such as the Gross-Pitaevskii(GP) equa-
tion for bosons or the Kohn-Sham density-functional theory
(DFT) for fermions. Despite their remarkable success, the
treatment of particle interaction or correlation effects is only
approximate within these approaches, and can lead to incor-
rect results, especially as the strength of particle interactions
is increased. It is therefore necessary to develop alternative
computational methods that can describe the effect of inter-
action more accurately and reliably.

In this paper, we present a quantum Monte Carlo(QMC)
method to study the ground state of many-boson systems.
The method is in principle exact aside from controllable sta-
tistical and discretization errors. Our interest in the develop-
ment and use of this method was motivated by the realization
of the Bose-Einstein condensation in ultracold atomic gases
[1]. These are dilute gases consisting of interacting alkali-
metal atoms. The atomic interaction is well described by a
simple two-body potential, either attractive or repulsive, de-
pending on the scattering length. For weakly interacting sys-
tems, the mean-field GP approach has, as expected, per-
formed extremely well [2,3]. More recently, Feshbach
resonances[4] have successfully been used as a powerful
way to tune the strength of the interaction experimentally.

This provides a source of rich physics, and increases the
need for theoretical methods which can benchmark GP and
provide an alternative where GP is inadequate.

Several QMC methods exist for calculating the properties
of interacting many-body systems. The ground-state diffu-
sion Monte Carlo[5] and the finite-temperature path-integral
Monte Carlo (PIMC) [6] methods, which work in many-
particle configuration space and in the first-quantized frame-
work, have been successfully applied to a variety of boson
and fermion systems. In the context of atomic gases, Krauth
[7], Gruter et al. [8], and Holzmann and Krauth[9] have
employed PIMC to study finite-temperature properties of
trapped bosons with positive scattering lengths, modeling the
two-body interactions by a hard-sphere potential. Glyde and
co-workers have studied the ground state of trapped bosons,
also by hard spheres[10,11]. Ulmke and Scalletar[12] did
finite-temperature QMC calculations on quantum spin sys-
tems and the Bose-Hubbard model. In the latter calculation, a
hard-core repulsive potential was assumed, which allowed a
transformation of the problem into anXXZ spinlike problem
that can be treated with a fermion QMC method.

Our method is based on the auxiliary-field quantum
Monte Carlo(AFQMC) approach[13,14]. The AFQMC is a
field-theoretical method, where many-body propagators re-
sulting from two-body interactions are transformed, by use
of auxiliary fields, into a many-dimensional integral over
one-body propagators[15,16]. The many-dimensional inte-
gral is then computed using stochastic means. The AFQMC
framework is appealing for several reasons. Working in
second-quantization, it automatically imposes the proper
particle-permutation symmetry or antisymmetry. It provides
a many-body method with close formal relation to mean-
field approaches, as we discuss later. In addition, it allows
convenient calculation of the observables and correlation
functions.
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The AFQMC method has been widely employed to study
fermion systems in condensed matter[17–21], nuclear phys-
ics [22,23], and lattice gauge theory. Essentially no work has
been done using AFQMC for interacting boson systems,
however. In this paper, we formulate a ground-state method
for many-boson systems. We project the many-body boson
ground state from an initial trial stateuCTl. Our choice of
uCTl is a permanent consisting ofN identical single-particle
orbitals, which was first suggested in a model calculation by
Sugiyama and Koonin[14]. The many-body ground state is
projected from uCTl with open-ended, branching random
walks to sample the auxiliary fields. We formulate an impor-
tance sampling scheme, which greatly improves the effi-
ciency of the method and makes possible simulations of
large systems. We also discuss in detail the back-propagation
technique which allows convenient calculation of virtually
any ground-state observables.

Our method retains all the advantages of AFQMC. It al-
lows the use of any single-particle basis, which in this paper
is chosen to be a real-space grid. As we discuss in Sec. VI, it
provides a means for true many-body calculations in a
framework which closely relates to the GP approach. The
approach can be viewed as a stochastic collection of parallel
GP-like calculations whose “coherent” linear combination
gives the interaction and correlation effects.

In this paper, we present our QMC method for bosons and
discuss its behavior and characteristics. We use a trapped
atomic boson gas as our test system, where the atoms interact
via an attractive or repulsive contact two-body potential. A
sufficiently detailed description of the method is given to
facilitate implementation. Compared to its fermionic coun-
terpart, our method here is formally simpler. It therefore also
offers opportunities to study algorithmic issues. Because of
the intense interest in methods for treating correlated systems
(fermions or bosons) and the relatively early development
stage of this type of QMC method, a second purpose of the
paper is to use the bosonic test ground to explore, discuss,
and illustrate the generic features of ground-state QMC
methods based on auxiliary fields. The majority of the appli-
cations in this paper will be to systems where exact results
are available for benchmark. These include small systems,
which can be diagonalized exactly, and the case of untrapped
bosons with attractive interactions in one dimension, where
analytical solutions exist. It is worth emphasizing that the
method scales gracefully(similar to GP) and allows calcula-
tions for a large numbersNd of bosons. We will show results
for larger systems(,1000 sites and hundreds of particles) in
one and three dimensions to illustrate this.

Our paper is organized as follows. In Sec. II, we establish
some conventions and review the basic ground-state projec-
tion and auxiliary-field quantum Monte Carlo method. In
Sec. III, we introduce our method for bosons, including the
formulation of an importance-sampling scheme and the
back-propagation technique for convenient calculation of vir-
tually any ground-state observables. In Sec. IV, we describe
the implementation of our method to study the ground state
of a trapped Bose atomic gas, which we model by a Bose-
Hubbard Hamiltonian with an external trapping potential. We
also describe our implementation of the GP approach to
study the same Hamiltonian. In Sec. V, we present our com-

putational results from both QMC and GP. In Sec. VI, we
discuss the relation between QMC and GP, comment on
computing issues, and present our concluding remarks. Fi-
nally, in the Appendixes we provide additional technical de-
tails of the method.

II. BACKGROUND

A. Many-body Hamiltonian

We use the second-quantized formalism throughout this
paper. We assume that an appropriate set of single-particle
basis huxilj has been chosen, in terms of which the wave
functions will be expanded. For simplicity, we assume that
the single-particle basis is orthonormal, although this is not
required. The number of basis states isM. The operatorsci

†

and ci, respectively, are the usual creation and annihilation
operators for the stateuxil. They satisfy the commutation
relationfci ,cj

†g−=di j . This automatically imposes the symme-
trization requirement of the many-body wave functions.

We limit our discussion to a quantum-mechanical, many-

body system with two-body interactions. The HamiltonianĤ
has a general form of

Ĥ = K̂ + V̂, s1d

whereK̂ is the sum total of all the one-body operators(the
kinetic energy and external potential energy),

K̂ = o
i j

Kijci
†cj ,

and V̂ contains the two-body interactions,

V̂ = o
i jkl

Vijklci
†cj

†ckcl .

Our objective is to calculate the ground-state properties of
such a system, which contains a fixed number of particles,N.

B. Ground-state projection

The ground-state wave functionuF0l can be readily ex-
tracted from a given trial solutionuCTl using the ground-
state projection operator

Pgs; e−DtĤeDtET, s2d

whereET is the best guess of the ground-state energy, pro-
vided thatuCTl is not orthogonal touF0l. Applying the op-
eratorPgs repeatedly touCTl would exponentially attenuate
its excited-state components, leaving only the ground state,
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sPgsdnuCTl →
n→`

uF0l, s3ad

PgsuF0l → uF0l. s3bd

Because of its resemblance to the real-time propagator, the
operatorPgs is also called the imaginary-time propagator. In
ground-state QMC methods,Pgs is evaluated by means of a
Monte Carlo sampling, resulting in a stochastic representa-
tion of the ground-state wave function.

C. Basic auxiliary-field method

Two essential ingredients are needed in order to evaluate
Pgs within a reasonable computing time. The first is the
Trotter-Suzuki approximation[24,25]. The propagator is bro-
ken up into a product of exponential operators, which be-
comes exact in the limitDt→0. The second-order form of
this approximation is

e−DtsK̂+V̂d = e−s1/2dDtK̂e−DtV̂e−s1/2dDtK̂ + OsDt3d. s4d

The second ingredient is the Hubbard-Stratonovich(HS)
transformation[15,16], which allows us to reduce the two-
body propagator to a multidimensional integral involving
only one-body operators, using the following identity[26]:

es1/2dDtv̂2
=

1
Î2p

E
−`

`

dx e−s1/2dx2
exÎDtv̂, s5d

wherev̂ is a one-body operator:v̂;oi jvi j ci
†cj. The hermitic-

ity of V̂ allows us to decompose it into a sum of the square of
one-body operatorshv̂ij (see, e.g., Ref.[26]),

V̂ = −
1

2o
i

v̂i
2. s6d

Because of this, we can always apply the HS transformation
to a general two-body operator,

e−DtV̂ = p
i
E

−`

`

dxi
e−s1/2dxi

2

Î2p
exi

ÎDt v̂i + OsDt2d. s7d

Applying these two procedures, we obtain an approximate
expression of the ground-state projection operator,

Pgs= eDtETe−s1/2dDtK̂Hp
i
E

−`

`

dxipsxidexi
ÎDt v̂iJ

3e−s1/2dDtK̂ + OsDt2d, s8d

where psxd is the normalized Gaussian probability density
function with unit standard deviation: psxd
;s1/Î2pde−s1/2dx2

. This approach is applicable to both boson
and fermion systems. It enables us to compute the exact
ground state of a quantum many-body system. To reduce the
systematic error from the finite time stepDt, the so-called
“Trotter error,” small time stepsDt are necessary. Often,
calculations are performed for severalDt values. Then an

extrapolation toDt→0 is made to remove the Trotter error.
For convenience we define the following notations:

(a) xW ;hx1,x2,…j: collection of all auxiliary fields.
(b) psxWd;pipsxid: a (normalized) multidimensional

probability density function, which is the product of the one-
dimensional probability density functionspsxid.

(c) B̂vsxWd: a product of the exponential one-body op-
erators arising from the auxiliary-field transformation. From

Eq. (8), B̂vsxWd;pie
xiÎDt v̂i.

(d) B̂sxWd: the product ofB̂vsxWd with all other one-body
exponential operators that do not depend on the auxiliary
fields xW, and all the necessary scalar prefactors. For the pro-

jector in Eq.(8), B̂sxWd;eDtETe−s1/2dDtK̂B̂vsxWde−s1/2dDtK̂.
With these notations,Pgs takes a generic form of a high-

dimensional integral operator,

Pgs<E dxW psxWdB̂sxWd. s9d

D. Wave-function representation

We write our wave functions in terms of the basis func-
tions uxil. A single-particle wave function is written as

uwl = o
i

wiuxil = o
i

wici
†u0l ; ŵ†u0l. s10d

A single-permanent,N-boson wave function is given by

ufl = f̂1
†f̂2

†
¯ f̂N

† u0l. s11d

In general, the exact ground-state wave function is a super-
position of such permanents. Unlike the fermionic case,
where the particles occupy mutually orthogonal orbitals,
there is no such restriction on the orbitals here. We use this
freedom in our method to have all the bosons occupy the
same orbital inufl, which greatly simplifies the computation
[14]. We will refer to this as theidentical orbital represen-
tation (IOR). This representation eliminates the usual facto-
rial computational complexity of permanents. The exponen-

tial of a one-body operatorÂ [e.g., B̂sxWd] transforms a
permanent into another permanent[27],

eÂufl = uf8l. s12d

(In Appendix A, we include a brief summary of properties of
wave functions in IOR.)

E. METROPOLIS AFQMC

Standard AFQMC calculations[14] employ METROPOLIS

Monte Carlo algorithm to compute various ground-state ob-
servables,
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kÂlgs=
kCTuPgs¯ PgsÂ Pgs¯ PgsuCTl

kCTuPgs¯ PgsuCTl

=

E DshxWm,yWnjdPshxWm,yWnjdkCTup
m

B̂sxWmdÂp
n

B̂syWnduCTl

E DshxWm,yWnjdPshxWm,yWnjdkCTup
m

B̂sxWmdp
n

B̂syWnduCTl

=

E DshxWm,yWnjdPshxWm,yWnjdkhshxWmjdufshyWnjd
khshxWmjduÂufshyWnjdl

khshxWmjdufshyWnjd

E DshxWm,yWnjdPshxWm,yWnjdkhshxWmjdufshyWnjd
, s13d

where

DshxWm,yWnjd ; p
m

dxWmp
n

dyWn,

PshxWm,yWnjd ; p
m

psxWmdp
n

psyWnd,

and in the last line we have introduced the shorthand

khshxWmjdu ; kCTup
m

B̂sxWmd,

ufshyWnjdl ; p
n

B̂syWnduCTl.

The METROPOLIS simulation is carried out by sampling the
probability density function defined by the integrand in the
denominator. Given the choice ofCT in the identical-orbital
representation, this readily applies to bosons, which is how
the model calculation by Sugiyama and Koonin[14] was
done. The total length of the imaginary time is predetermined

by Dt and the number ofB̂ operators in the product.

III. A GROUND STATE METHOD FOR BOSONS

In this paper, we formulate an approach for ground-state
calculations of bosons with branching random walks. There
are several advantages in implementing the Monte Carlo
sampling as a random-walk process. It is a true ground-state
formalism with open-ended random walks which allow pro-
jection to long enough imaginary times. The sampling pro-
cess can be made much more efficient than in standard
AFQMC, by virtue of importance sampling withCT to guide
the random walks. It also leads to a universal approach for
bosons and fermions, where it is necessary to use the
random-walk formalism in order to implement a constraint to
deal with the sign and complex-phase problems[19,21].

A key observation is that we can choose an IOR single-
permanent wave function as the initial wave functionuCTl.
At each imaginary time stept;n Dt in the projection in Eq.

(3), the wave function is stochastically sampled by a collec-
tion of single-permanent wave functionshufi

stdlj, where the
index i (in upright roman letter) is different from the basis
index i. From Eqs.(9) and (12), we see that, with each
walker ufi

s0dl initialized to uCTl in IOR, the resulting projec-
tion will lead to a superposition of single-permanent wave
functions, all of which are in IOR.

Each permanent evolves by the stochastic application of
Pgs, as follows: we randomly samplexW from the probability

density functionpsxWd, then applyB̂sxWd on ufi
stdl,

ufi
st+Dtdl ← B̂sxWdufi

stdl. s14d

We will call these permanentsrandom walkers. The collec-
tion of these random walkers at each imaginary time step is
also referred to aspopulation.

The population must first be equilibrated so that the
ground-state distribution is reached. After equilibrium the
ground state is given stochastically by the collection of per-
manents,

uF0l 8 o
i

ufil. s15d

The random-walk process naturally causes the walker’s
orbitals to fluctuate. In order to increase sampling efficiency,
we may associate aweightfactorwi to each walkerufil. For
example, we can use the walker’s amplitude as the weight
factor,

wi ; Îkfiufil.

A better definition of the weight will be introduced later
when we discuss importance sampling. We duplicate a
walker when its weight exceeds a preset threshold. Con-
versely, walkers with small weights(lower than a predeter-
mined limit) should be eliminated with the corresponding
probability. In this way, the walkers will have roughly the
same weight. This results in a branching random walk.

A. Measurement: “Brute force” and mixed estimators

The ground-state expectation value of an observableÂ is
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kÂlgs=
kF0uÂuF0l
kF0uF0l

. s16d

In principle, we can use the same Monte Carlo samples as
both kF0u and uF0l. A “brute force” measurement on the
populationhufi

stdlj at imaginary timet is given by

kÂlbf
std ;

oij
kfj

stduÂufi
stdl

oij
kfj

stdufi
stdl

s17d

and the estimatorkÂlbf is the average of such measurements.
The “brute force” estimator is not useful in real-space-based
QMC methods such as diffusion Monte Carlo, because the
overlaps between different walkers would lead tod func-
tions. Here the walkers are nonorthogonal mean-field wave
functions, and Eq.(17) is well defined in principle. The es-
timator is exact for all observables in the limit of largeNwlkr.
The ground-state energy estimated in this way is variational,
namely, the computed energy lies higher than the exact value
(outside of the statistical error bar) and converges to the ex-
act value asNwlkr is increased. In practice, however, the use-
fulness of the “brute force” estimator is limited to smaller
systems. In general, it will have large variances. Reducing

the variance is expensive becausekÂlbf scales asOsNwlkr
2 d,

whereNwlkr is the size of the population used to represent
uF0l.

The simplest approach to measuring the observables is the
mixed estimator, i.e.,

kÂlmix ;
kcTuÂuF0l
kcTuF0l

. s18d

For example, to compute the ground-state energy, we can
introduce the so-called local energyELfcT,fg,

ELfcT,fg =
kcTuĤufl
kcTufl

. s19d

The ground-state energy is obtained from the weighted sum
of the local energies associated with each walker,

Emix =

o
i

kcTufilELfcT,fig

o
i

kcTufil
. s20d

The local energy for each walker can be computed using the
formula given in Appendix A.

The mixed estimator in Eq.(18) is exact only if the op-

eratorÂ commutes with the Hamiltonian. Otherwise, a sys-
tematic error arises. Nonetheless, the mixed estimator often
gives an improvement over the purely variational estimator,

kÂlT ;
kCTuÂuCTl
kCTuCTl

. s21d

Two formulas are often employed to correct for the system-
atic error,

kÂlextrap1; 2kÂlmix − kÂlT, s22d

kÂlextrap2;
kÂlmix

2

kÂlT

. s23d

The second formula is useful for quantities such as density
profile, which must be non-negative everywhere. These cor-
rections are good only ifuCTl does not differ significantly
from uF0l. In general, we need the back-propagation scheme
to obtain the correct ground-state properties. We will de-
scribe this method after introducing importance sampling.

B. Importance sampling

In practice, the efficiency of the bare random walk de-
scribed earlier is very low, because the random walks naively
sample the Hilbert space, causing the weights of the walkers
to fluctuate greatly. This results in large statistical noise. We
formulate an importance sampling procedure[19,21]—using
the information provided by the trial wave functionuCTl—to
guide the random walk into the region where the expected
contribution to the wave function is large.

1. Importance-sampled random walkers

An importance-sampled walker also consists of a perma-
nent and a weight, although the weight will be redefined
according to the projected overlap of the permanent with the
trial wave function. The purpose is to define a random-walk
process which will lead to a stochastic representation of the
ground-state wave function in the form

uF0l 8 o
i

wi
ufi l

kCTufil
, s24d

wherewi is the new weight of the walker. The overlap enters
to redefine the weight factor such that walkers which have
large overlap withuCTl will be considered “important” and
will tend to be sampled more. Such walkers will also have
greater contributions in the measured observables. Since the
permanent now appears as a ratioufil / kCTufil, its normal-
ization is no longer relevant and can be discarded, unlike in
the unguided random walk. The only meaningful information
in ufil is its position in the permanent space.

2. Modified auxiliary-field transformation

Now we describe the random-walk process for the modi-
fied walkers. The goal is to modifyPgs in Eq. (9) such that
the random-walk process leads to random walkers with the
characteristics described above in Eq.(24). The basic idea is
the same as that in Ref.[19]. The main difference is that here
we are dealing with bosons. In addition, the HS fields in Ref.
[19] are discrete Ising-like, which allowed simplifications in
the importance sampling, while here the auxiliary fields are
continuous and thus a more general formalism will be devel-
oped. Our mathematical derivation here follows that of Ref.
[21]. Up to now we have assumed thatkCTufil is real and
positive. There is therefore no additional subtlety with the
meaning of importance sampling and the correct form of the
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overlap to use, which Ref.[21] addressed in the context of
fermionic calculations with general interactions.

To derive the importance-sampled propagator, we plug
Eq. (24) into Eq.(3b). We will focus on the two-body propa-
gator, which is evaluated stochastically and is therefore af-
fected by importance sampling in a nontrivial way.

The modified propagator,P̃gs, consists of two parts. The
first is a rewriting of Eq.(5),

es1/2dDtv̂2
=

1
Î2p

E
−`

`

dx e−s1/2dx2
exIx−s1/2dxI2

eÎDt sx−xIdv̂, s25d

where we have added an arbitrary shiftxI to the auxiliary field
x in the auxiliary-field operator. This is a change of variable
in the integral on the right-hand side and does not alter the

result of the integral. The new propagatorP̃gs must preserve
the representation ofuF0l in the form of Eq.(24), which
dictates that the walkers propagate in the following manner:

wi
st+Dtd ufi

st+Dtdl
kCTufi

st+Dtdl
← wi

std ufi
stdl

kCTufi
stdl

. s26d

The second part ofP̃gs is a result of this requirement. By
bringing the termkCTufi

st+Dtdl in Eq. (26) to the right-hand
side, we obtain an overlap ratiokCTufi

st+Dtdl / kCTufi
stdl.

Combining the two parts gives an importance-sampled
propagator of the form

P̃gsffg < E dxW psxWdWsxW,fdB̂sxW − xWId, s27d

where

WsxW,fd ;
kCTuB̂sxW − xWIdufl

kCTufl
exWI·xW−s1/2dxWI·xWI s28d

is the aggregate of all the scalar prefactors in the modified
propagator. This propagator takeshwi

std , ufi
stdlj and advances

the population tohwi
st+Dtd , ufi

st+Dtdlj, both of which represent
uF0l in the form of Eq.(24).

Monte Carlo sampling of the new propagatorP̃gs is simi-
lar to the one without importance samping. We samplexW
from a normal Gaussian distribution, and apply the operator

B̂sxW −xWId to the current walkerufi
stdl. But now we accumulate

an extra multiplicative weight factorWsxW ,fi
stdd every time

we apply Eq.(27),

ufi
st+Dtdl ← B̂sxW − xWIdufi

stdl, s29ad

wi
st+Dtd ← WsxW,fi

stddwi
std. s29bd

Here we use the customary notation of vector dot product,
e.g.,xWI ·xW ;oixIixi. Note that the weight factorWsxW ,fi

stdd de-
pends onuCTl and both the currentsfi

stdd and futuresfi
st+Dtdd

walker positions.

3. The optimal choice for auxiliary-field shift x¢O

The optimal importance sampling is achieved when each
random walker contributes equally to the estimator. We

therefore choosexWI to minimize the fluctuation in the weight
factorwi. We do so by minimizing the fluctuation ofWsxW ,fd
with respect toxi at its averagesxi =0d,

]

] xi

UF kCTuB̂sxW − xWIdufil
kCTufil

exWI·xW−s1/2dxWI·xWIGU
xi=0

= 0.

It is sufficient to expand the exponentials in terms ofDt and
require the term linear inxi to vanish, since this is the leading
term, containingÎDt. The others are vanishingly small as
Dt→0. The best choice forxIi that satisfies this requirement
is

xIi = − ÎDt
kCTuv̂iufil
kCTufil

; − ÎDt v̄i . s30d

This choice depends on the current walker position as well as
uCTl, which is to be expected, since the objective for the shift
is to guide the random walk toward the region where
kCTufi

stdl is large. WithxWI determined, the algorithm for the
random walk, as given in Eq.(29), is now completely speci-
fied.

4. Local energy approximation

We can furthermore approximate the prefactorWsxW ,fd in
Eq. (28) to obtain a more elegant and compact expression.
After rewriting the prefactor in the form of an exponential,

expandingB̂sxW −xWId in terms ofDt, and ignoring terms higher
thanOsDtd in the exponent, we obtain

p
i

es1/2dDts1−xi
2dsv̄i

2−vi
2des1/2dDtvi

2
, s31d

where

vi
2 ;

kCTuv̂i
2ufil

kCTufil
. s32d

The product is over the basis indexi, which should be dis-
tinguished from the walker index i. The latter is held fixed
here. The first exponential in Eq.(31) can be ignored by
noting that the average value ofxi

2 with respect to the Gauss-
ian probability density function is unity. Settingxi

2→1, i.e.,
evaluating the exponential at the mean valuekxi

2l, is justified
becausev̄i

2 andvi
2 do not change drastically within one time

step. We also note that1
2oivi

2=−kCTuV̂ufil / kCTufil, which is
the mixed estimator of the potential energy with respect to
the walkerufil. Combining this term with the similar contri-
bution from the one-body propagator, we obtain a simple,
approximate expression for Eq.(28),

WsxW,fid < eDtsET−ELfCT,figd, s33d

whereELfCT,fig is the local energy offi as defined in Eq.
(19). Note that, contrary to Eq.(28), this form depends only
on the current walker position and not the future, although in
practice a symmetrized version can be used which replaces
the local energy by the average of the two. For a good trial
wave function, the local energy fluctuates less in the random
walk. If the trial wave function is the exact ground-state
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wave function, the local energy becomes a constant and the
weight fluctuation is altogether eliminated.

The algorithm resulting from Eq.(33) is analternativeto
Eq. (28). The two are identical and exact in the limitDt
→0, but can have different Trotter errors.

Our importance-sampling formalism has a formal similar-
ity to that in the diffusion Monte Carlo(DMC) methods in
real configuration space[28,29]. The local energy has a simi-
lar form and our shift to the auxiliary field can be formally
related to the force bias in DMC. Subtle and important dif-
ferences exist, however, in both the formalism and imple-
mentation of importance sampling in these methods[21].

C. Measurement: Back-propagation

With importance sampling, the mixed estimator in Eq.
(18) is given by

kÂlmix =

o
i

wi
kCTuÂufil
kCTufil

o
i

wi

. s34d

For example, the ground-state energy is

Emix =

o
i

wiELfcT,fig

o
i

wi

.

As mentioned earlier, the normalization offi is irrelevant
becausefi only appears in ratios in any formula that defines
the algorithm: Eqs.(24), (28), (30), (33), and (34). We can
(and should) normalize the permanent as needed, and discard
the resulting normalization factor.

The mixed estimator is often inadequate for computing
observables whose operators do not commute with the
Hamiltonian. For example, the condensate fraction in the at-
tractive trapped Bose-Hubbard model is greater than 100% if
the Green’s functionkci

†cjl is estimated using the mixed es-
timator. Therefore we have to propagate the wave functions
on both the right- and the left-hand side of the operator,

kÂlbp =
kCTue−tbpĤÂuF0l

kCTue−tbpĤuF0l
. s35d

This estimator approaches the exact expectation value in Eq.
(16) as tbp is increased. Zhang and co-workers proposed a
back-propagation technique[19] that reuses the auxiliary-
field “paths” from different segments of the simulation to

obtainkF0
bpu;kCTue−tbpĤ, while avoiding theNwlkr

2 scaling of
a brute-force evaluation with two separate populations for
kF0u and uF0l. Here we give a more formal derivation and
description of the technique, and implement it to bosons.

At imaginary timet, the population ishufi
stdlj, which rep-

resentsuF0l in the form of Eq.(24). The propagator in the
denominator in Eq.(35) can be viewed equivalently as oper-
ating on the left or the right. The latter is precisely the “nor-
mal” importance-sampled random walk fromt to the future

time t8;t+tbp, which consists ofnbp;tbp/Dt steps. We
first assume that there is no branching(birth/death of walk-
ers) in the normal walk, i.e., the weights are fully multiplied
according to Eq.(28). The random walk of each walker will
generate a path in auxiliary-field space. For convenience we

will denote the path-dependent operatorB̂fxW i
std−xWIsfi

stddg by

B̂i
std, and the weight factorWsxW i

std ,fi
stdd by Wi

std. Further, we

will denote the time-ordered productB̂i
st8−Dtd

¯ B̂i
st+DtdB̂i

std by

B̂i
st8:td, and correspondingly the product ofWi

std by Wi
st8:td.

Each path defines a product

1

kCTufi
st8dl

Wi
st8:tdB̂i

st8:tdkCTufi
stdl. s36d

Collectively these products give a stochastic representation

of e−tbpĤ.

Replacing the operatore−tbpĤ in the numerator and de-
nominator of Eq.(35) with Eq. (36), and using the expres-
sion for uF0l given by Eq.(24), we obtain

kÂlbp =

o
i 7CT* 1

kuCTufi
st8dl

Wi
st8:tdB̂i

st8:tdÂ wi
std*fi

std8
o

i 7CT* 1

kuCTufi
st8dl

Wi
st8:tdB̂i

st8:tdwi
std*fi

std8
.

s37d

Using the propagation relation in Eq.(29), we can show that

B̂i
st8:tdWi

st8:tdwi
stdufi

stdl = wi
st8dufi

st8dl, s38d

i.e., the denominator in Eq.(37) reduces tooiwi
st8d. This re-

sult is to be expected, and can also be seen by completing the
nbp steps of the “normal” random walk we discussed above.
With importance sampling, the Monte Carlo estimate of the
denominator is simply given by the weights at timet8.

To simplify the numerator in Eq.(37), we associate a
back-propagatedwave function with each walkerufi

stdl,

uhi
stbpdl ; fB̂i

st+tbp:tdg†uCTl. s39d

Note that each of theseh’s originates from the trial wave

function uCTl, and is propagated by applying theB̂’s in re-
verseorder, as implied by the Hermitian conjugation. We
may then write Eq.(37) in the following form:

kÂlbp =

o
i

wi
st8d khi

stbpduÂufi
stdl

khi
stbpdufi

stdl

o
i

wi
st8d

. s40d

The estimators in Eqs.(35) and (40) parallel that of the
standard AFQMC estimator in Eq.(13). The ufl’s and khu’s
have similar meanings. The only difference lies in how the
paths are generated. Here an open-ended random walk is
used to advance an ensemble of paths fromt to t8, which
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result in fluctuating weights that represent the path distribu-
tion. In standard AFQMC, a fixed length path(corresponding
to tbp+teq, with teq being the minimum time for equilibria-
tion or, failing that, the maximum time that can be managed
by the calculation) is moved about by theMETROPOLISalgo-
rithm, which eliminates branching by the acceptance/
rejection step. In other words, the estimators in Eq.(13) and
(40) are the same except for the weights.

Equation(40) defines an algorithm for obtaining an esti-

mate of kÂlbp via the following steps:(i) A population is
recorded ashufi

stdlj; (ii ) as the random walk continues, the
path history is kept for a time intervaltbp; (iii ) the population
huhi

stbpdlj is then generated by back-propagation using Eq.
(39); (iv) this population is matched in a one-to-one manner

to hufi
stdlj, weighted by the weightat the later time, wi

st8d, and
the estimator is formed.

In the back-propagation the propagators are, as shown in
Eq. (39), identical to those in the forward direction, but in
reverse order in imaginary time. As in the normal walk, the
normalization ofuhi

stbpdl does not enter in the estimator. Simi-
lar to the mixed estimator, this procedure can be repeated
periodically to improve statistics. Evidently this estimator is
exact in the limit of largetbp.

We have assumed that there is no branching within the
intervaltbp. In practice, a population control scheme is often
used which causes the birth/death of walkers. This does not
affect the derivation above or the basic algorithm. The effect
on the implementation is that a list of ancestry links must be
kept for the forward steps, which indicates the parent of each
walker at each step in the imaginary-time durationtbp. As a
result of branching, two or morekhu’s may share the same
segment of the paths in their “past” and the same parent
ufi

stdl. The estimator remains exact for largetbp. Branching
or weight fluctuation does have a more serious practical im-
plication, however. Astbp is increased, more and morekhu’s
will be traced back to the same parentufi

stdl. Or equivalently,

fewer and fewer permanents in the sethufi
stdlj will contribute

to the estimator. This results in a loss of efficiency or an
increase in variance. Better importance sampling will help
improve the situation, often greatly, by reducing fluctuations
in weights, although the problem will always occur at large
enoughtbp. In our applications to date we have rarely en-
countered the problem and find that the computed observ-
ables converge quite rapidly(see Sec. V for illustrative re-
sults).

IV. TRAPPED BOSON GAS: MODEL AND
IMPLEMENTATIONS OF QMC AND GP METHODS

In this section, we discuss the model we use to describe a
single-species, Bose atomic gas with pairwise contact inter-
action, confined in a harmonic trap in one or three dimen-
sions. We then describe the implementations of both our
QMC method and the standard mean-field GP approach to
study this model. Numerical results will be presented in Sec.
V.

A. Model

We use an effective potential characterized by the low-
energy atom-atom scattering length,as. The two-body inter-
action takes a simple form

Usr 1 − r 2d =
4pas"

2

m
dsr 1 − r 2d. s41d

For this effective potential to be valid, several assumptions
are made; for example, the dominant effect is froms-wave
scattering, anduasu is much smaller than the average interpar-
ticle spacing. For more details, we refer the reader to Ref.
[3]. In the alkali-metal gases these conditions are in general
well met, and the model potential can be expected to give
quantitative information, although care must be taken to vali-
date the conditions.

The real-space Hamiltonian of trapped bosons ind dimen-
sions is

Ĥ =E d3r ĉ†sr dS−
"2

2m
¹r

2 +
1

2
mv0

2r2Dĉsr d +
1

2

4pas"
2

m
E d3r 1E d3r 2ĉ†sr 1dĉ†sr 2ddsr 1 − r 2dĉsr 2dĉsr 1d. s42d

The one-body HamiltonianK̂ consists of the kinetic energy
and the (external) confinement potential. The interaction
HamiltonianV̂ is the sum of all the two-body potentials. The
characteristic trap frequency isv0, which is related to the
so-called oscillator length scale byaho=Î" /mv0.

We introduce a real-space lattice, with a linear dimension
of L, in a simulation cell of volumes2rbdd. The lattice spac-
ing is therefore§=2rb/L. Further, we will consider only a
spherically symmetric trap here for simplicity. We truncate
the simulation cell accordingly and assume that the wave
function is negligible outside the maximum sphere enclosed
by the cell.

The discretized Hamiltonian corresponding to Eq.(42) is

Ĥ = o
i
H− tF o

jPNNsid
ci

†cj − 2dci
†ciG + 1

2kur̃ i − r̃ 0u2ci
†ciJ

+ 1
2Uo

i

sci
†cici

†ci − ci
†cid, s43d

whereci
† and ci are the usual creation and annihilation op-

erators at sitei. The Hubbard parameterst ,U, and k are
related to the real, physical parameters as follows:
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t =
1

2§2 , s44ad

U =
4pas

§d , s44bd

k =
§2

aho
4 , s44cd

where for simplicity we have set"=m=1. The lattice coor-
dinater̃ i is related to the real coordinate byr̃ i =sL /2rbdr i, and
r̃ 0 is the lattice coordinate of the trap’s center. Note thatas is
the true scattering length only in three-dimensional systems.
Nonetheless, we will retain the symbolas in Eq. (44b) as a
convenient measure of the interaction strength in any dimen-
sion.

In the discretized model, our resolution is limited by the
lattice spacing. This is consistent with the conditions of va-
lidity of the model interaction in Eq.(41), as it in a sense
“integrates out” the short-range dynamics. In this model, the
lattice constant§ must be much smaller compared to the
average interparticle spacing, but larger than the scattering
length,

uasu ! § ! r−1/d. s45d

With a negativeas, the particles tend to “lump” together due
to the gain in the interaction energy. This is a situation where
we especially have to be aware of the validity of the effective
potential. As mentioned, we will do a consistency check at
the end of the calculation to ensure that the occupancy of the
lattice points is less than unity.

B. Implementation of QMC

Implementation of our QMC method for this model is
straightforward. The number of basisM is equal to the num-
ber of lattice sites inside the truncated sphere of radiusrb.
The two-body term in Eq.(43) is in the desired form of Eq.
(6). With a negativeU, the HS transformation in Eq.(7)
leads toM auxiliary fields, with one-body propagators in the
form of expsÎDtuUuxin̂id, where n̂i ;ci

†ci is the density op-
erator. Our trial wave functionuCTl is the Gross-Pitaevskii
(GP) wave functionFGP, which we describe in the next sub-
section.

We mention here a technical point in the implementation.
The ground-state projection in our method involves the ap-

plication of one-body propagator in the form ofeÂ on a
single-permanent wave functionufl. This usually translates
into a matrix-vector multiplication in the computer program,
which generally costsOsM2d. Often there are special prop-

erties of Â that can be exploited to evaluate the one-body
propagator more efficiently. In the Bose-Hubbard Hamil-
tonian, the only nondiagonal part of the Hamiltonian in real

space is the kinetic operator inK̂. We can separate it from the
other one-body operators and apply the kinetic propagator in
momentum space. Wave functions are quickly translated be-
tween these two representations using fast Fourier transforms

(FFT). In this way, the actual application ofe−s1/2dDtK̂ in-
volves only diagonal matrices; thus the overall cost for each

e−s1/2dDtK̂ operation is reduced toOsM log Md. We observe in
our calculations that the additional Trotter error is much
smaller than the error already introduced in the original
breakup, Eq.(4).

C. Implementation of the Gross-Pitaevskii self-consistent
equation

The GP wave functionFGP is the single-permanent wave
function

FGPsr 1,r 2,…,r Nd = wsr 1dwsr 2d ¯ wsr Nd, s46d

which minimizes the expectation value of the ground-state
energy. Such a wave function satisfies the self-consistent
Gross-Pitaevskii equation[30–32]

−
"2

2m
¹2wsr d +

1

2
mv0

2ur − r 0u2wsr d

+
sN − 1d

N

4pas"
2

m
uwsr du2wsr d = mwsr d. s47d

[We keep the prefactorsN−1d /N, since we will study both
large and small values ofN.]

To compare our QMC results to those of mean field, we
carry out GP calculations on the same lattice systems. The
discretized GP Hamiltonian in the second-quantized form is

ĤGP= − to
i
S o

jPNNsid
ci

†cj − 2dci
†ciD +

1

2
ko

i

ur̃ i − r̃ 0u2ci
†ci

+
N − 1

N
Uo

i
sn̄ici

†ci − 1
2n̄i

2d . s48d

Here n̄i is the expectation value of the density operator,

n̄i ;
kFGPuci

†ciuFGPl
kFGPuFGPl

. s49d

We have implemented two methods for solving the GP
equation. Thefirst is the usual self-consistent iterative ap-
proach. We generate an initial density profile,n̄i

s0d, by solving
the noninteracting Hamiltonian(with U=0). The density is

fed back to construct the initial HamiltonianĤGP
s0d in Eq. (48).

Direct diagonalization of this one-body Hamiltonian yields
its ground stateuFGP

s1dl. We thus obtain an updated densityn̄i
s1d

and a better HamiltonianĤGP
s1d. This procedure is iterated until

the desired convergence criterion is satisfied. We choose our
convergence condition to be

E dr uwst+1dsr d − wstdsr du

1

2
E dr uwst+1dsr d + wstdsr du

, e, s50d

wheree is a small number(usually on the order of 10−13 for
double precision numbers).
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The secondmethod we use to solve Eq.(48) avoids the
diagonalization procedure. It is closely related to the QMC
method, both computationally and formally(see Sec. VI).
We use the ground-state projectore−DtĤGP,

se−DtĤGPdnuCs0dl →
n→`

uFGPl. s51d

The initial wave function is arbitrary and can be, for ex-
ample, chosen again as the solution withU=0. The feedback
mechanism through the density profilen̄i remains the same.
By using FFT for the kinetic propagator as described in Sec.
IV B, a speed gain is obtained, especially for large systems.
In practice, we have often found this method to be a simpler
and faster alternative to the first method of diagonalization
and iteration. Note that the scalar term −1

2fsN−1d /NgUoin̄i
2

does not affect the projection process, but with itĤGP corre-
sponds to the original many-body Hamiltonian in that

kFGPuĤGPuFGPl=kFGPuĤuFGPl.

V. RESULTS

In this section, we present results from our QMC and GP
calculations in one, two, and three dimensions. To validate
our method and illustrate its behavior, the majority of the
calculations will be on systems where exact results are avail-
able for benchmark. These include small lattices, which can
be diagonalized exactly, and the case of attractived-function
interactions in one dimension, where analytic solutions exist.
For the purpose of presenting the method to facilitate imple-
mentation, some numerical results and comparisons are
shown in detail to illustrate the behavior and characteristics
of the method.

Most of the results we present here will be for attractive
interactions, where the method is exact and is free of any
phase problem[21] from complex propagators(see Sec.
V C). Such systems therefore provide a clean testground for
our method. In addition, with attractive interactions the con-
densate in 3D is believed to collapse beyond a critical inter-
action strength or number of particles. Mean-field calcula-
tions [33] estimate the collapse critical point to be about
Nas/aho=−0.575. The exact behavior of the condensate near
the critical point is, however, not completely clear, as many-
body effects are expected to have an impact. At the end of
this section, we will also show some preliminary results for
larger systems with both attractive and repulsive interactions
in 3D.

We measure the ground-state expectation values of the
following quantities: the ground-state energy, kinetic energy

kT̂l, external confining potentialkV̂trapl, interaction energy

kV̂2Bl, density profilekn̂il, and the condensate fraction(often
abbreviated “cond. frac.” in the tables and figures). The con-
densate fraction is defined as the largest eigenvalue of the
diagonalized density matrix[3]. If we write the one-body
Green’s-function matrixkci

†cjl in terms of its eigenvalues
hnaj and eigenvectorshxasidj,

kci
†cjl = o

a

naxa
†sidxas jd,

then the largest eigenvalue divided by the total number of
particles gives the condensate fraction.

A. Comparison with exact diagonalization:as,0

The many-body Hamiltonian(43) can be diagonalized ex-
actly for small systems to benchmark our QMC calculation.
We compare our QMC results with exact diagonalization for
a one-dimensional lattice of 13 sites, and study its behavior
for different values of the interaction strengthas and number
of particlesN.

The first system we study has five bosons, witht
=2.676,U=−1.538, andk=0.3503. These values were de-
rived from the physical parametersaho=8546 Å and as
=−5.292310−6 Å−1. (Recall that, by our definition,as in 1D
does not have the dimension of length, and is not the scat-
tering length itself.) For all systems in this section and in
Sec. V C, we multipliedt , U, andk by a factor of 108 Å2 to
make them dimensionless and close to unity. Our energies
are therefore dimensionless. Table I shows the comparison of
the quantities computed using three methods: QMC, GP, and
exact diagonalization(ED). The statistical uncertainty of
QMC results is presented in parentheses. We see that the
agreement between QMC and ED is excellent. GP makes
significant errors here because of the sizable interaction
strength as well as the small number of particles.

To illustrate the convergence in imaginary time stepDt,
we show in Fig. 1 the total energy and the average trap

energykV̂trapl. The former can be obtained exactly from the
mixed estimator while the latter requires back-propagation.
To show the Trotter error, we have deliberately done the
calculations up to rather largeDt values. We see that both
quantities converge to the exact results asDt→0.

To illustrate the convergence of observables in back-
propagation length, we show in Fig. 2 the various observ-
ables computed by QMC as a function oftbp. Separate cal-
culations were done for different values oftbp. For all
calculations, a smallDt value of 0.01 was used. We see that,

for observables that do not commute withĤ, the mixed es-
timatesstbp=0d are indeed quite biased. The linear extrapo-
lation in Eq. (22) with the variational(GP) estimate still
leaves a significant error in most cases. In fact, for the kinetic

TABLE I. Comparison of QMC calculation against exact diago-
nalization(ED) and the Gross-Pitaveskii(GP) method. The system
has 13 sites, 5 particles,t=2.676,U=−1.538,k=0.3503. In the
QMC calculation, we useDt=0.01,tbp=4.0, and the GP solution as
the trial wave function.

Type
ground-state

energy kT̂l kV̂trapl kV̂2Bl Cond. frac.

ED −1.009 4.278 0.8427 −6.129 95.59%

QMC −1.008s2d 4.279(3) 0.8423(5) −6.129s2d 95.59%

GP −0.493 3.919 0.7504 −5.162 100%
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energy it gives a worse estimate. With back-propagation, all
quantities converge to the exact results rather quickly, by
tbp,2. (The total energykHl is of course exact for anytbp,
including tbp=0.) The energy expectation values show that
this is a system with significant interaction effects. Alkali-
metal systems at the experimental parameters often have
weaker interaction strengths, and the convergence rate is ex-
pected to be even faster.

Our QMC method is exact and therefore independent of
the trial wave functionCT, except for convergence rate and
statistical errors. In Fig. 3, we show QMC results obtained
using two differentCT’s, namely the noninteracting solution
and the GP wave function. The convergence of condensate
fraction and trap energy are shown versus back-propagation

time tbp for a system of six particles on 13 sites. The calcu-
lations lead to the same results. The quality ofCT, however,
does affect the variances of the observables and their conver-
gence rates withtbp. For example, the noninteracting wave
function, which disregards the two-body interaction, is more
extended(in its density profile) than GP. Its mixed estimator
is therefore worse than that with the GP trial wave function.
The mixed estimator for the ground-state energy is exact in
both, but the variance is slightly larger with the former.

We now show results for different systems withN from
two to nine bosons and varying interaction strengths. We
note that if we keep the productsN−1dU constant, the Gross-
Pitaevskii equation predicts the sameper-particle energies
and densities. For brevity, we shall refer to the curve in
which sN−1dU is constant as theGP isoline. Deviation from
the GP isoline is therefore an indication of the effect of
many-body correlations. In order to show results on multiple
systems at the same time, we will scan GP isolines. Figure 4
shows the QMC and GP results as a function of the number
of particles. In the GP calculations, the per-particle quantities
are constants. The QMC results, on the other hand, capture

FIG. 1. Convergence of QMC observables withDt. The main

graph shows the trap energykV̂trapl, while the inset shows the total
energy,E. The energies andDt are dimensionless, as explained in
the text. The system has the same parameters as in Table I. Lines
connecting QMC data are to aid the eye.

FIG. 2. Convergence of the computed observ-
ables versustbp. The system is the same as in
Table I. The different panels show five different
observables. The horizontal axes are the back-
propagation length. Exact and GP results are also
shown for comparison. Solid lines are present
only to aid the eye.

FIG. 3. Independence of QMC results on trial wave functions
(“GP” for Gross-Pitaevskii, “nonint” for noninteracting solution).
The system is the same as in Table I, except that here we use six
particles. The horizontal axes are the back-propagation length.
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the effect of correlations. Both the total energy and the inter-
action energy are lowered from the GP results. The exact
results deviate from GP more as the system becomes more
correlated, i.e., whenU is increased or whenN is decreased.
AlthoughN is too small here because of the limitation of ED,
the results are representative of the general trend in larger
systems(see below).

Figure 5 further illustrates the effect of particle correlation
in this system. Although the exact interaction energy is lower
than that of GP, the exact density profile is more extended.
This is also manifested in the average trap potential energy

kV̂trapl /N, where the QMC results are 0.1981(8) and
0.1605(2) for N=2 and 9 particles, respectively, while the
GP value is 0.1501. In GP, interaction energy is lowered by
increasing particle overlap, namely, by shrinking the profile.
In reality, the particles find a way to lower the interaction

energy without statically confining to the central sites, result-
ing in a more extended one-body profile.

B. Comparison with analytic results in 1D: as,0

The problem of an arbitrary number of untrapped bosons
interacting with an attractived potential in one dimension
can be solved analytically[34], yielding analytic expressions
for the total energy and density profile. In this section, we
carry out QMC and GP calculations and compare our results
against these analytic results, on systems of up to 400
bosons. The Hamiltonian in the continuous real space is

Ĥ = − 1
2o

i=1

N
]2

] xi
2 − 1

2g o
i. j=1

N

dsxi − xjd. s52d

The interaction constantsg.0d is related to our Hubbard
parameters byg;uU /Îtu. The ground state of this Hamil-
tonian is anN-boson bound state. By fixing the center of
mass atx=0, we can eliminate the contribution from its over-
all motion, which leads to the following analytic expressions
for the density profile[35]:

rsxd = 1
2go

n=1

N−1

s− 1dn+1 nsN ! d2e−gnNuxu/2

sN + n − 1d ! sN − n − 1d!
, s53d

and the total energy,

E = − 1
96g

2NsN2 − 1d. s54d

In our QMC calculations, we again put the system on a
real-space lattice. The lattice size is chosen to be large
enough so that discretization errors are comparable to or
smaller than statistical errors. As the ground state of the sys-
tem is a droplet in the absence of the external confining
potential, the center of mass can slide in the calculation due
to random noise. We therefore need to subtract the center-of-
mass motion, which we will refer to as thedroplet correc-
tion. Technically, this can be accomplished conveniently in
the random walk by treating the system with respect to its
center of mass. In Appendix B, we describe our method for
this correction, which is applicable in any situation where the
center of mass and relative motions need to be separated. In
our calculations, the correction affects the kinetic and total
energies as well as the density profiles. The results shown

TABLE II. Comparison of QMC and GP results to available
exact results. The system has 20 particles andg=0.154. A lattice of
1024 sites was used, withDt=0.01 andtbp=2.5. For comparison,
QMC results without droplet correction(DC) (see Appendix B 2)
are also shown.

Type
Ground-state

energy kT̂l kV̂2Bl Cond. frac.

Analytic result −1.971

QMC −1.964s8d 2.044(8) −4.007s4d 99.76%

QMC (no DC) −1.851s8d 2.157(8) −4.007s4d 99.76%

GP −1.784 1.776 −3.561 100%

FIG. 4. Comparison of QMC, GP, and ED results for different
systems. Calculations were done along a GP isolinesN−1dU
=−2.30t for up to nine particles in 13 sites. The graphs show the
total and interaction energiesper particle. QMC and exact results
are indistinguishable. GP is accurate in the limit of weak correlation
but deviates more from the exact results as the system becomes
more correlated.

FIG. 5. The normalized density(dimensionless) at different lat-
tice sites. Results are for 13-site systems along the GP isolinesN
−1dU=−2.30t. The normalized GP curve is identical for any num-
ber of particles along this line. QMC results are shown forN=2 and
N=9. The QMC results have very small error bars and are indistin-
guishable from ED(not shown). The QMC density profiles are
more extended, although the interaction energies are lower than GP,
as shown in Fig. 4.

W. PURWANTO AND S. ZHANG PHYSICAL REVIEW E70, 056702(2004)

056702-12



below were all obtained with this correction applied.
We first study a system of 20 particles withg=0.154.

Table II shows the energies, and Fig. 6 the density profiles.
This is a system where mean field makes significant errors.
Our QMC results are in excellent agreement with the exact
results.

We next scan systems with various numbers of particles
by following the GP isolinesN−1dg=4.0. The energy per
particle is shown as a function ofN in Fig. 7, for up to 400
particles. Figure 8 shows the density profiles for up to 100
particles. Again, the agreement between QMC and exact re-
sults is excellent. As the interaction strengthg is increased or
asN is decreased, mean-field results deviate more and more
from the exact results. For example, as we go fromg
=0.01sN=400d to 10 times the strength along the isoline,
the systematic error in the GP total energy increases roughly
from 0.5% to 5%.

We now study the system along a different line, holding
the interaction strengthg fixed while scanning the number of
particles, again up toN=400 particles. Figure 9 shows the

behavior of kĤl /N3, with g=0.0403. At largeN, the total
energy is roughly proportional toN3. Compared to Figs. 7
and 8, the interaction is stronger at largerN and weaker at
lower N, with the crossover atN,100. Most of the calcula-
tions are therefore more challenging numerically. Again
QMC was able to completely recover the correlation energy
missed by GP. At largeN, smaller times steps were used and

FIG. 6. Comparison of calculated density profiles from QMC
and GP with analytical results for the system shown in Table II. The
densities are normalized. The QMC error bars are displayed every
five data points to avoid cluttering the plot. The inset shows the
same curves with logarithmic vertical scale, indicating that at large
distances the density is exponential.

FIG. 7. Comparison of the energy from QMC with the exact
answer and GP for a different number of particles. Energy per par-
ticle is shown along the GP isolinesN−1dg=4.0. We use a lattice of
1024 sites,Dt=0.01, andtbp=4.0.

FIG. 8. Comparison of the density profiles from QMC and GP.
The normalized densities are shown along the GP isolinesN−1dg
=4.0 for severalN values. The system is the same as that in Fig. 7.
The GP density is the same for anyN on the isoline.

FIG. 9. Comparison of computed ground-state energy for differ-
ent numbers of particlesN. The interaction strength is held constant
at g=−0.0403. The total energy divided byN3 is shown as a func-
tion of N for QMC, GP, and exact calculations. Conservative QMC
parameters were used, withtbp=4.0 in all case, andDt=0.01 for
N,200 andDt=0.005 otherwise.
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more computing was necessary to reduce the statistical er-
rors. (Note that the error bars appear larger at smallerN in
the plot because of the division byN3.)

C. Comparison with exact diagonalization:as.0

We have shown that our QMC algorithm is exact and
works well for a wide range of systems with attractive inter-
actions. If the interaction is repulsive(as.0, or equivalently
U.0), the one-body propagators resulting from the HS
transformation become complex, in the form of
expsiÎDtUxin̂id. The same algorithm applies in this case as
well. In principle, the complex one-body operator only re-
quires a change to the corresponding complex operations.
But in practice a serious phase problem occurs, which causes
the calculation to lose efficiency rapidly at larger interaction
strengths. We discuss this problem and how to control it
below. Our initial studies indicate that, for moderate interac-
tion strengths, the algorithm as is remains very efficient and
gives accurate results, allowing reliable calculations for pa-
rameters corresponding to experimental situations in 3D.

We benchmark our algorithm in one- and two-
dimensional systems with repulsive interactions against ex-
act diagonalization. Table III shows results for a one-
dimensional system, with 13 sites and four particles. The
agreement between QMC and exact result is excellent. Re-
sults from GP are also shown. The GP and QMC density
profiles have roughly the same size, as is evident from the

values ofkV̂trapl. However, GP overestimates the interaction
energy because it does not take into account the particle-
particle correlation. In the mean-field picture, expanding the
density profile is the only way to lower the interaction en-
ergy, so that the particles overlap less with each other.(Note

that kV̂trapl is indeed slightly larger for GP.) In reality, the

particles can avoid each other more effectively by means of
many-body correlation. The QMC correctly recovers this
correlation, which lowers the total energy without spreading
the density as much as GP does.

Table IV shows results for bosons in a two-dimensional
trap, using a 434 lattice. The GP solution also exhibits the
same behavior as in the 1D calculation, in that the density
profile is slightly more extended, and the interaction energy
is overestimated. As in other cases, the QMC statistical error
bar on the condensate fraction was not computed directly, but
we estimate it to be on the last digit.

As mentioned earlier, the complex propagators cause
problems. Since the orbitals and walker weights become
complex, asymptotically the phase of these weights will be
uniformly distributed in the complex plane. The denomina-
tors in Eqs.(34) and (40) will be dominated by noise, caus-
ing the Monte Carlo sampling efficiency to decay and ulti-
mately destroying the algebraic scaling of QMC. This is the
so-called sign or phase problem[19,21]. In real-space meth-
ods, this problem is connected to fermions, but here we have
a situation where a phase problem appears in the ground
state of a bosonic system. Physically, it is easy to see why a
phase problem must occur. Our many-body wave function is
being represented in IOR, with only one orbital in each
walker. With a repulsive interaction, the only way to reflect
correlation effects, i.e., particles avoiding each other, is to
make the orbitals complex.

As we see below, our algorithm remains efficient and
gives accurate results for large systems with scattering
lengths corresponding to experimental situations in 3D. As
the interaction strengths become much stronger, the phase
problem will ultimately make the approach ineffective. We
have done preliminary calculations in which we control the
phase problem by applying a phaseless formalism described
in Ref. [21]. Our results indicate that the systematic errors
introduced by the phaseless approximation are small for
moderate interaction strengths. We expect to therefore be
able to obtain accurate and reliable results for scattering
lengths well into the experimental “strong interaction” re-
gime achievable by Feshbach resonance.

D. Realistic calculations in three dimensions

In this section, we present some test results on realistic
systems of trapped particles in three dimensions. QMC re-
sults were obtained with back-propagation and conservative
choices ofDt and convergence parameters. We also carry out
the corresponding Gross-Pitaevskii calculations, and make
comparisons against our exact QMC results. We choose a
trap with a characteristic lengthaho=8546 Å. The trap was
discretized into a 15315315 lattice, in a range that corre-
sponds to 5.26aho. Below we will again use reduced units
(see Sec. IV A) for the energies. To relate them to realistic
physical situations, a multiplicative factor proportional to the
inverse atomic mass is needed. For85Rb atoms, this factor is
about 5.7 nK.

Table V shows the result of a QMC calculation for 175
particles in a three-dimensional trap. The scattering length is
as=−22.4 Å. In this regime, the GP solution is a good ap-

TABLE III. Comparison of QMC results against exact diagonal-
ization (ED) and the Gross-Pitaveskii(GP) method in 1D. Here we
use 13 sites and 4 particles;t=2.676,U= +1.538,k=0.3503,Dt
=0.01, andtbp=2.5.

Type
Ground-state

energy kT̂l kV̂trapl kV̂2Bl Cond. frac.

ED 4.24 1.18 1.793 1.269 98.5%

QMC 4.24(2) 1.18(2) 1.790(8) 1.273(8) 98.6%

GP 4.43 1.03 1.800 1.599 100%

TABLE IV. Comparison of QMC calculations against exact di-
agonalization(ED) and Gross-Pitaveskii(GP) projection in a 4
34 lattice, with four bosons. t=0.2534,U= +0.3184,k
=3.700,Dt=0.01, andtbp=2.5.

Type
Ground-state

energy kT̂l kV̂trapl kV̂2Bl Cond. frac.

ED 6.000 1.818 3.8326 0.350 97.8%

QMC 6.005(6) 1.817(2) 3.8325(2) 0.355(5) 97.8%

GP 6.067 1.763 3.8359 0.469 100%
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proximation to the exact ground-state wave function. We see
that this is indeed the case in Table V. The interaction energy
is lowered in the many-body calculation as expected. Inter-
estingly, the external potential energy is lower than in GP.
Consistent with this, the exact density profile is tighter than
in GP, as shown in Fig. 10. The trend here appears different
from what we observed in small 1D trapped systems in Fig.
5, but consistent with the large untrapped systems in Fig. 8.
We are presently carrying out more calculations to cover a
wider range of parameters and study the role of dimension-
ality.

We now turn to bosons with repulsive interactions in a
three-dimensional trap. We again use a 15315315 lattice,
and simulate 100 bosons. We choose a scattering lengthas of
80 Å. This value is close to the experimental39K singlet [36]
or 87Rb triplet [37] scattering lengths. In Table VI, we show
the calculated energies and condensate fraction. For this in-
teraction strength, the impact of the phase problem on the
statistical error is small, and the QMC calculation is very
efficient. The true condensate is, like in the 1D repulsive
case, tighter than that predicted by GP, with lower interaction
energy.

VI. DISCUSSIONS

A. Connection between QMC and Gross-Pitaevskii projections

The QMC method we have presented, which goes beyond
mean field and includes many-body correlations, has a deep

connection with the GP mean-field approach. Our approach
uses an HS transformation which leads to integrals of single-
particle operators over auxiliary fields. The mean-field solu-
tion can be regarded as the leading term in the stationary-
phase asymptotic expansion of the exact solution[38]. Our
method evaluates this exact solution, which is in the form of
many-dimensional integrals, by Monte Carlo sampling. In
this section, we comment further on the formal connection
between our importance-sampled QMC and the GP as done
by projection(the second of the two GP methods discussed
in Sec. IV C).

Let us reconsider the two-body propagator in the modified
AF transformation, Eq.(25). Let us suppose that we are now
taking the first QMC step, where the walker and the trial
wave function are bothufl s=uCTld. Following the discus-
sion of the optimal choice ofxWI in the same section, Sec.
III B, we know thatxW =0 is a stationary point with the choice

xIi = − ÎDt v̄i ; − ÎDt
kfuv̂iufl
kfufl

. s55d

We can approximate the integral in Eq.(25) by the value of
the integrand atxW =0, which can be justified in the limit of
small Dt. More explicitly, with a change of the integration
variableyW ;ÎDtxW, the integral can be written as

es1/2dDtv̂2
= e−Dtfs1/2dv̄2−v̄v̂gE

−`

`

dy
e−y2/2Dt

Î2pDt
eysv̂−v̄d.

As Dt→0, the dominant contribution to the integral comes
from the maximum of the Gaussian aty=0. The leading term
of the importance-sampled many-body propagator is there-
fore

e−DtfK̂−oiv̄iv̂i+s1/2doiv̄i
2g, s56d

where K̂ is the one-body term in the original Hamiltonian.
Under this approximation, our random walk becomes deter-
ministic, needing only one walker. If for the next step we use
the updated wave functionuf8l to evaluate the newhv̄ij in
Eq. (55), we obtain a self-consistent projection with one-
body propagators. In fact, the one-body Hamiltonian in the
exponent of Eq.(56) is precisely the mean-field Hamiltonian.
For example, for the Bose-Hubbard model the last two terms
in the exponent lead to the GP mean-field potential

TABLE V. Comparisons of QMC and GP calculations for 175
particles in a 3D spherical trap, withas=−22.4 Å and aho

=8546 Å. The energies are displayed as per-particle quantities.
Both the QMC and GP results are extrapolated toDt→0.

Type
Ground-state

energy kT̂l kV̂trapl kV̂2Bl Cond. frac.

QMC 16.979(6) 16.47(5) 6.54(1) −6.03s4d 99.73%

GP 17.115 15.60 6.77 −5.25 100%

TABLE VI. QMC calculation of 100 particles in a three-
dimensional trap. A lattice of 15315315 was used. The param-
eters correspond toaho=8546 Å andas=80 Å. The quantities dis-
played are for per particle.

Type
Ground-state

energy kT̂l kV̂trapl kV̂2Bl Cond. frac.

QMC 24.687(9) 9.573(9) 11.933(5) 3.181(3) 99.80%

GP 24.922 9.281 12.028 3.612 100%

FIG. 10. Comparison of density profiles from the QMC and GP
for 175 particles. The system is the same as described in Table V.
The QMC profile is more peaked and tighter than GP.
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sn̄in̂i − 1
2n̄i

2d . s57d

Apart from the factorsN−1d /N which approaches unity in
the limit of largeN, we have recovered the GP propagator.
The projection with Eq.(56) lowers the variational energy
for any initial ufl and is stationary whenufl is the GP
solution. This is why GP is the best variational wave func-
tion that has the form of a single permanent, and hence a
reasonable trial wave function to use for most of our QMC
calculations.

It is also clear from the discussion above that the
importance-sampling formalism allows us to have an optimal
form of HS transformation, in that the HS propagatoreysv̂−v̄d

involves only the differencev̂− v̄. In other words, although in
Eq. (7) we write the decomposition for the bare interaction
term, the importance-sampling transformation effectively in-
troduces a mean-field background based on the trial wave
function and allows the HS to deal with only a residual qua-
dratic interaction term,sv̂− v̄d2.

To summarize, our QMC method reduces to GP if we
evaluate the many-body propagator by the stationary-point
approximation, using only the centroid of the Gaussian. The
full method evaluates the many-dimensional integral over
auxiliary fields exactly by Monte Carlo calculation. It cap-
tures the interaction and correlation effects with a stochastic,
coherent ensemble of mean-field solutions. The structure of
the calculation can be viewed as a superposition of the GP
projections that we have described. Our method, therefore,
provides a way to systematically improve upon GP while
using the same framework.

B. Computing

Because of the structure of QMC as a superposition of GP
projections, our method scales gracefully with system size.
As discussed in Sec. IV B, the bulk of our method scales as
OsM log Md, with the significant speedup from using fast
Fourier transform. For example, the QMC calculation shown
in Table VI required fewer than 8 h on asingle Alpha EV67
processor. The 1024-site QMC calculation shown in Table II
took about 4 h to getgood statistics, with very conservative
choices ofDt and other convergence parameters. It required
about 1.3 gigabytes of memory, largely because of back-
propagation path recording. In contrast, treated fully, the lat-
ter problem would mean the diagonalization of a sparse, Her-
mitian matrix containings831041d2 elements. Although this
can be reduced by exploiting symmetries, exact diagonaliza-
tion of this problem is clearly not within reach with comput-
ing capabilities in the foreseeable future.

We typically use hundreds of walkers in our calculation.
The stochastic nature of QMC means the number of walkers
fluctuates due to branching and killing of walkers with very
large and very small weights(see Sec. III). The population
therefore must be controlled to ensure that it does not grow
or decay too much, and that the walker weights have a rea-
sonable distribution. Our method to control the population is
similar to that discussed in Ref.[26].

We comment on the effect of the number of particles,N,
on computational scaling. Because of the use of IOR, the

algorithm appears as if it only involved a single particle. This
is not true, of course, since both the shiftv̄i and the local
energy scale withN (see Appendix A). As a result, a smaller
time step must be used for largerN. The above argument
suggests thatDt scaleroughly as 1/N, which we have used
as a guideline in our calculations to select the range ofDt to
use. Extrapolations with separate calculations using different
Dt values are then carried out.

C. Conclusion and outlook

In conclusion, we have presented an auxiliary-field QMC
algorithm for obtaining the many-body ground state of
bosonic systems. The method, which is based upon the field-
theoretical framework and is essentially exact, provides a
means to treat interactions more accurately in many-body
systems. Our method shares the same framework with the
GP approach, but captures interaction and correlation effects
with a stochastic ensemble of mean-field solutions. We have
illustrated our method in trapped and untrapped boson
atomic gases in one, two, and three dimensions, using a real-
space grid as a single-particle basis which leads to a Bose-
Hubbard model for these systems. We have demonstrated its
ability to obtain exact ground-state properties. We have also
carried out the GP mean-field calculations and compared the
predictions with our exact QMC results. Our method is ca-
pable of handling large systems, thus providing the possibil-
ity to simulate system sizes relevant to experimental situa-
tions. We expect the method to complement GP and other
approaches, and become a useful numerical and theoretical
tool for studying trapped atomic bosons, especially with the
growing ability to tune the interaction strengths experimen-
tally and reach more strongly interacting regimes.

From the methodological point of view, more work re-
mains to be done with the repulsive case to deal with the
phase problem. We have shown that our method as it stands
can be very useful for moderate interaction strengths. For
stronger interactions, our preliminary study indicates that the
phaseless approximation[21], which eliminates the phase
problem but introduces a systematic error, is very accurate
for scattering lengths well into the Feshbach resonance re-
gime. We are currently examining this more systematically to
quantify the extent of the bias. Because of the simplicity of
these bosonic systems compared to electronic systems, they
provide an ideal testbed, where for small sizes the problem is
readily solved by exact diagonalization.

A variety of applications are possible. The ground state of
the Bose-Einstein condensates with both attractive and repul-
sive interatomic interactions can be studied for various inter-
action strengths, including the strongly interacting regime
reached by Feshbach resonance. They can also be studied in
different dimensions and under different conditions. In par-
ticular, it would seem straightforward to generalize our
present framework to study rotations and vortices, since we
are already dealing with complex propagators and wave
functions in the repulsive case. In addition, it will be inter-
esting to treat boson-fermion mixtures with our approach. As
mentioned, the auxiliary-field method is already widely used
to treat strongly interacting fermion systems.
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APPENDIX A: IDENTICAL-ORBITAL REPRESENTATION

In fermion calculations, we must use anM 3N matrix to
represent a determinant, because the orbitals must be mutu-
ally orthogonal. In the boson case, however, this restriction is
absent. The most general form of a many-boson permanent is
expensive to compute, having complexity ofOsNM ! d. But
we can choose to make all the orbitals identical. In matrix
language, we will have only anM-row column vector. We
will term this representation theidentical-orbital representa-
tion (IOR). Each many-boson wave function in IOR has the
form of a GP mean-field solution. Two conditions are neces-
sary for this choice to be viable in the QMC, namely that an
initial trial wave function of this form is allowed and that
successive projections preserve the form. The only require-
ment for the former to hold is that the wave function in IOR
not be orthogonal to the true many-body ground state, and it
is straightforward to show that Eq.(12) holds for aufl in this
form. More complex wave functions can always be gener-
ated by a linear combination of such wave functions. In fact,
this is what we accomplish through our Monte Carlo simu-
lation.

In operator language, a singleN-boson wave functionufl
is given by

where f̂†;oaca
†fa. In matrix form, ufl would be M 3N

matrix f whose columns are identical. The overlap of two
such wave functions is given by

kcufl = perscT · fd = N ! sc† · fdN,

where the boldface symbolsc and f represent the single-
column vectors forc andf, respectively. Similarly, for any

one-body operatorÂ,

kcuÂufl = N ! Nsc† ·A · fdsc† · fdN−1, sA1d

whereA is the matrix forÂ. The matrix element of a quartic
(two-body) operator is given by

kcuba
†bb

†bgbdufl = N ! NsN − 1dca
* cb

* fgfdsc† · fdN−2.

sA2d

APPENDIX B: DROPLET CORRECTION

1. Correcting the density broadening

To handle the droplet system given by the translationally
invariant Hamiltonian in Eq.(52), an extra ingredient is nec-
essary in addition to the “basic” QMC algorithm that we
have described. In a deterministic calculation, for example in
GP, the motion of the center of mass(c.m.) can be simply
eliminated by fixing it at the origin, as in Eq.(53). In the
QMC calculation, however, the orbitals fluctuate as they are

propagated byB̂sxW −xWId, where the random fieldsxW are drawn
from a Gaussian probability density. Random noise will in-
evitably cause the c.m. of the system to slide, undergoing a
free diffusion whose average position is the origin.

Left unchecked, this spurious c.m. motion will lead to an
artificial broadening of the density profile. To correct for it in
the density profile, we could simply shift the c.m. of every
walker back to the origin. However, the importance-sampled
propagator involves ratios of overlaps with the trial wave
function kCTufil, which would have to be corrected in the
random walk whenever a shift is made.

Our solution is to let the trial wave function slide along
with the walkers. In other words, we rewrite the kinetic en-
ergy operator as

T̂ = T̂c.m.+ T̂8, sB1d

where T̂c.m. represents the c.m. kinetic energy andT̂8 the
internal kinetic energyin the c.m. frame. The total Hamil-
tonian is given by

Ĥ = T̂c.m.+ T̂8 + V̂ ; T̂c.m.+ Ĥ8. sB2d

The quantities that we wish to compute are governed by the

“internal” Hamiltonian Ĥ8. Since V̂ involves only relative

coordinates among the particles, it commutes withT̂c.m.; or
more generally,

fT̂c.m.,Ĥ8g = 0. sB3d

In this way, the importance-sampled QMC propagation is

determined byĤ8. The motion of the c.m. in each walker is

a separate free diffusion which is governed byT̂c.m.. In the
random-walk process, we are now free to correct for the c.m.
motion by shifting the walkers back to the origin whenever
necessary. For consistency, this correction must be applied
both in the normal random walk and in the back-propagation
phase.

2. Separating the center-of-mass kinetic energy

The moving trial wave function, however, poses a prob-
lem for the calculation of the kinetic energy. Now the orbit-
als are free to slide, and the diffusive motion of the orbital’s
c.m. is no longer suppressed in the laboratory frame. When
we use the usualt term in the Hamiltonian in Eq.(43) to

compute the kinetic energy, we obtain the totalkT̂l, in which

Tc.m.;kT̂c.m.l and the desiredkT̂8l are mixed. This leads to a
spurious increase in the estimate of the kinetic energy and
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consequently the total energy, as shown in Table II. Since we
know the nature of the c.m. motion, it is fairly straightfor-
ward to extractTc.m. and explicitly subtract it from the ki-
netic and total energy estimates. Allowing the droplet to
freely slide in the calculation is equivalent to having a spu-

rious “propagator”e−DtT̂c.m., whose effect on the wave func-
tion for the c.m. is described by the diffusion equation

−
] Cc.m.sR,td

] t
= T̂c.m.Cc.m.sR,td.

It is a well known property of such a diffusion process that
the averaged squared distancekR2stdl grows linearly with
the (imaginary) time t,

kR2stdl = bt.

We can obtainb by recording the quantitykR2stdl for a
period of time in the QMC simulation. The constantb is
linearly proportional toTc.m.. More specifically, the c.m.

Hubbard hopping parametertc.m. can be extracted fromb,

tc.m.= b/2. sB4d

This gives us the correct kinetic and total energies,

kT̂8l = S1 −
tc.m.

t
DkT̂l, sB5ad

kĤ8l = kT̂8l + kV̂2Bl. sB5bd

To conclude, there are two necessary modifications in the
QMC algorithm in order to treat quantum droplets.

(i) We let the trial wave function effectively “follow” the
QMC orbitals, by defining its c.m. according to that of each
QMC orbital.

(ii ) For each orbital, we accumulate all the applied c.m.
shifts in order to estimatekR2stdl. This gives us the fraction
of c.m. kinetic energy through the constanttc.m..
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