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We formulate a quantum Monte Carl@MC) method for calculating the ground state of many-boson
systems. The method is based on a field-theoretical approach, and is closely related to existing fermion
auxiliary-field QMC methods which are applied in several fields of physics. The ground-state projection is
implemented as a branching random walk in the space of permanents consisting of identical single-particle
orbitals. Any single-particle basis can be used, and the method is in principle exact. We illustrate this method
with a trapped atomic boson gas, where the atoms interact via an attractive or repulsive contact two-body
potential. We choose as the single-particle basis a real-space grid. We compare with exact results in small
systems and arbitrarily sized systems of untrapped bosons with attractive interactions in one dimension, where
analytical solutions exist. We also compare with the corresponding Gross-Pita@Bkiinean-field calcula-
tions for trapped atoms, and discuss the close formal relation between our method and the GP approach. Our
method provides a way to systematically improve upon GP while using the same framework, capturing
interaction and correlation effects with a stochastic, coherent ensemble of noninteracting solutions. We discuss
various algorithmic issues, including importance sampling and the back-propagation technique for computing
observables, and illustrate them with numerical studies. We show results for systems withNup4@0
bosons.
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[. INTRODUCTION This provides a source of rich physics, and increases the
need for theoretical methods which can benchmark GP and
The study of many-body quantum systems has been grovide an alternative where GP is inadequate.

very challenging research field for many years. Computa- Several QMC methods exist for calculating the properties
tional methods have often been the way of choice to extracsf interacting many-body systems. The ground-state diffu-
theoretical understanding on such systems. Most computaion Monte Carld5] and the finite-temperature path-integral
tional guantum-mechanical studies are based on simplévlonte Carlo(PIMC) [6] methods, which work in many-
mean-field theories such as the Gross-Pitae§#) equa- particle configuration space and in the first-quantized frame-
tion for bosons or the Kohn-Sham density-functional theorywork, have been successfully applied to a variety of boson
(DFT) for fermions. Despite their remarkable success, theand fermion systems. In the context of atomic gases, Krauth
treatment of particle interaction or correlation effects is only[7], Gruteret al. [8], and Holzmann and Krautf®] have
approximate within these approaches, and can lead to incomployed PIMC to study finite-temperature properties of
rect results, especially as the strength of particle interaction§apped bosons with positive scattering lengths, modeling the
is increased. It is therefore necessary to develop alternativéV0-body interactions by a hard-sphere potential. Glyde and
computational methods that can describe the effect of inte/c0-Workers have studied the ground state of trapped bosons,
action more accurately and reliably. also by hard sphergd.0,11). Ulmke and Scalletaf12] did

In this paper, we present a quantum Monte C4@dC) finite-temperature QMC calculations on quantum spin sys-

method to study the ground state of many-boson system ems and the Bose-Hubbard model. In the latter calculation, a

AR , ard-core repulsive potential was assumed, which allowed a
'I_'hg method 1SN prlnqple exact aSId(_e from cpntrollable S‘tatransformation of the problem into 20XZ spinlike problem
tistical and discretization errors. Our interest in the develop

; : . _that can be treated with a fermion QMC method.
ment and use of this method was motivated by the realizatio at can be treated a fermion QMC method

. ) Do _ N Our method is based on the auxiliary-field quantum
of the Bose-Einstein condensation in ultracold atomic gaseg;,te Carlo(AFQMC) approacH13,14. The AFQMC is a

[1]. These are dilute gases consisting of interacting alka"Tield-theoretical method, where many-body propagators re-

”.‘eta' atoms. The atomic interaction s _weII descnbgd by asulting from two-body interactions are transformed, by use
simple two-body potential, either attractive or repulsive, de-

: . . : of auxiliary fields, into a many-dimensional integral over
pending on the scattering length. For weakly interacting SYSpne-body propagatorl5,16. The many-dimensional inte-
tems, the mean-field GP approach has, as expected, p

ral is then computed using stochastic means. The AFQMC
formed extremely well[2,3]. More recently, Feshbach ed P g Q

ramework is appealing for several reasons. Working in
resonance$4] have successfully been used as a powerfuL PP g g

h h of the i ] . " econd-quantization, it automatically imposes the proper
way to tune the strength of the interaction experimenta y'par'[icle-permutation symmetry or antisymmetry. It provides

a many-body method with close formal relation to mean-

field approaches, as we discuss later. In addition, it allows
*Electronic address: wirawan@camelot.physics.wm.edu convenient calculation of the observables and correlation
"Electronic address: shiwei@physics.wm.edu functions.
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The AFQMC method has been widely employed to studyputational results from both QMC and GP. In Sec. VI, we
fermion systems in condensed maft&¥—21, nuclear phys- discuss the relation between QMC and GP, comment on
ics[22,23, and lattice gauge theory. Essentially no work hascomputing issues, and present our concluding remarks. Fi-
been done using AFQMC for interacting boson systemsnally, in the Appendixes we provide additional technical de-
however. In this paper, we formulate a ground-state methoghjls of the method.
for many-boson systems. We project the many-body boson
ground state from an initial trial state;). Our choice of

|W+) is a permanent consisting of identical single-particle Il. BACKGROUND
orbitals, which was first suggested in a model calculation by -
Sugiyama and Koonifil4]. The many-body ground state is A. Many-body Hamiltonian

projected from|¥;) with open-ended, branching random . . .
walks to sample the auxiliary fields. We formulate an impor- e use the second-quantized formalism throughout this
tance sampling scheme, which greatly improves the effiPapPer. We assume that an approprlate set of_ single-particle
ciency of the method and makes possible simulations oPasis{{x)} has been chosen, in terms of which the wave
large systems. We also discuss in detail the back-propagatidinctions will be expanded. For simplicity, we assume that
technique which allows convenient calculation of virtually the single-particle basis is orthonormal, although this is not
any ground-state observables. required. The number of basis statedvis The operatorsfr

Our method retains all the advantages of AFQMC. It al-and ¢;, respectively, are the usual creation and annihilation
lows the use of any single-particle basis, which in this papebperators for the statéy;). They satisfy the commutation
is chosen to be a real-space grid. As we discuss in Sec. VI, telation[c; ,c;f]_:gij. This automatically imposes the symme-
provides a means for true many-body calculations in arization requirement of the many-body wave functions.

framework which closely relates to the GP approach. The We limit our discussion to a quantum-mechanical, many-
approach can be viewed as a stochastic collection of parallgloqy, system with two-body interactions. The Hamiltonidn
GP-like calculations whose “coherent” linear combinationy, o<y general form of
gives the interaction and correlation effects.

In this paper, we present our QMC method for bosons and
discuss its behavior and characteristics. We use a trapped H=K+V, (1)
atomic boson gas as our test system, where the atoms interact
via an attractive or repulsive contact two-body potential. A R
sufficiently detailed description of the method is given towhereK is the sum total of all the one-body operatgtise
facilitate implementation. Compared to its fermionic coun-kinetic energy and external potential energy
terpart, our method here is formally simpler. It therefore also
offers opportunities to study algorithmic issues. Because of R
the intense interest in methods for treating correlated systems K=>, KijciTC,-,
(fermions or bosonsand the relatively early development ij
stage of this type of QMC method, a second purpose of the
paper is to use the bosonic test ground to explore, discuss, -~ . . .
and illustrate the generic features of ground-state QMCath contains the two-body interactions,
methods based on auxiliary fields. The majority of the appli-
cations in this paper will be to systems where exact results
are available for benchmark. These include small systems,
which can be diagonalized exactly, and the case of untrapped
bosons with attractive interactions in one dimension, where
analytical solutions exist. It is worth emphasizing that theOur objective is to calculate the ground-state properties of
method scales gracefullgimilar to GB and allows calcula- such a system, which contains a fixed number of partitles,
tions for a large numbeiN) of bosons. We will show results
for larger systemg~ 1000 sites and hundreds of partiglés
one and three dimensions to illustrate this.

Our paper i_s organized as follows. Ilj Sec. Il, we establi;h The ground-state wave functidy) can be readily ex-
some conventions and review the basic ground-state projegracted from a given trial solutioh¥'y) using the ground-
tion and auxiliary-field quantum Monte Carlo method. In gi54e projection operator

Sec. lll, we introduce our method for bosons, including the

formulation of an importance-sampling scheme and the

back-propagation technique for convenient calculation of vir- Pgs= e—ATI:IeATET, )
tually any ground-state observables. In Sec. IV, we describe

the implementation of our method to study the ground state

of a trapped Bose atomic gas, which we model by a BosewhereEy is the best guess of the ground-state energy, pro-
Hubbard Hamiltonian with an external trapping potential. Wevided that|Wy) is not orthogonal tddg). Applying the op-
also describe our implementation of the GP approach t@ratorPy repeatedly tdW+) would exponentially attenuate
study the same Hamiltonian. In Sec. V, we present our comits excited-state components, leaving only the ground state,

7 — ot
V= E Vi”dci CjCC-
ijki

B. Ground-state projection
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n—oe extrapolation tcA7— 0 is made to remove the Trotter error.
(Pgd"| W) — | Do), (3a) For convenience we define the following notations:
() X={Xq,X,,...}: collection of all auxiliary fields.
Pgd®g) — |- (3b) (b) p(X)=IIip(x): a (normalized multidimensional

robability density function, which is the product of the one-

Because of its resemblance to the real-time propagator, t mensional probability density functionsx;).

operatorPy is also called the imaginary-time propagator. In N .
ground-state QMC method®, is evaluated by means of a (¢) B,(X): a product of the exponential one-body op-
Monte Carlo sampling, resulting in a stochastic representaerators arising from the auxiliary-field transformation. From

tion of the ground-state wave function. Eqg. (8), I%U(i)zﬂiex““_’ﬁi.

(d) I%()?): the product oié,,(i) with all other one-body
exponential operators that do not depend on the auxiliary
fieldsX, and all the necessary scalar prefactors. For the pro-

C. Basic auxiliary-field method jector in Eq.(8), é()z)Ee,ATETe—(1/2)A7KéU()z)e—(lIZ)ATK.

Two essential ingredients are needed in order to evaluate With these notationsPy takes a generic form of a high-
Pys Within a reasonable computing time. The first is thedimensional integral operator,
Trotter-Suzuki approximatiof24,25. The propagator is bro-

ken up into a product of exponential operators, which be- . -
comes exact in the limia7— 0. The second-order form of Pys= f dX p(X)B(X). (9)
this approximation is
e—Af(k+{/) — e—<1/2>Aﬁ2e—AT{/e—(1/2)Afk +O(AP). 4)
The second ingredient is the Hubbard-StratonoyidB) D. Wave-function representation

transformation[15,1€, which allows us to reduce the two-
body propagator to a multidimensional integral involving
only one-body operators, using the following identi6]:

We write our wave functions in terms of the basis func-
tions|x;). A single-particle wave function is written as

e(1/2A70? — i_ dx & W2X°gxA7 (5) o) = E oilxi) = E @ic|0) = &10). (10)
V2 I I

whered is a one-body operatofi= %;jv;;¢/c;. The hermitic- A single-permanenty-boson wave function is given by

ity of V allows us to decompose it into a sum of the square of
one-body operator®;} (see, e.g., Ref26]), |¢) = dids - HUl0). 11

V=- %E o7, (6)  In general, the exact ground-state wave function is a super-
: position of such permanents. Unlike the fermionic case,
Because of this, we can always apply the HS transformatiodhere the particles occupy mutually orthogonal orbitals,
to a general two-body operator, there is no such restriction on the orbitals here. We use this
) W freedomb[? lcnar(ZS ;netu_o?] to h?lve all tlf}e btohsons ochl[th.y the
- S12x same orbital if¢), which greatly simplifies the computation
et= Hf > Py AT+ OAP). (7)) [14]. We will refer to thisgas th)édentFi)caI orbital repFr)esen-
b v2m tation (IOR). This representation eliminates the usual facto-
Applying these two procedures, we obtain an approximateial computational complexity of permanents. The exponen-
expression of the ground-state projection operator, tial of a one-body operatoA [e.g., B(X)] transforms a

A o _ permanent into another permangat],
Pgs: eAETg(1/2A7K H f dxp(x;) € VAT D;
i —o0

)=o) (12)

Xe WK L O(A ), ®
(In Appendix A, we include a brief summary of properties of
where p(x) is the normalized Gaussian probability density wave functions in IOR.

function  with unit  standard  deviation: p(x)

= (1/\2m)e"¥2¥_This approach is applicable to both boson
and fermion systems. It enables us to compute the exact
ground state of a quantum many-body system. To reduce the E. METROPOLIS AFQMC

systematic error from the finite time stelpr, the so-called Standard AFQMC calculationg 4] employ METROPOLIS
“Trotter error,” small time stepd\r are necessary. Often, Monte Carlo algorithm to compute various ground-state ob-
calculations are performed for sevetat values. Then an servables,
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_ <q,T|7)gs' o 7Dgs'a‘ Pgs' o ngqjﬁ

(A)gs=
9 <q’T|Pgs' o Pgs| Vo)
| DUt P AT BlATI BT
m n
| Pt P T AT B0 TT BT
m n
e oy re e v 7R A ST
| A A e
_ (n({Xah)| (Yn})
- 3 (13)
f D({Xi Ynh) (X Yo ({Xen) | (Y })
[
where (3), the wave function is stochastically sampled by a collec-
o . . tion of single-permanent wave functiofigs”)}, where the
D% ¥ = T1 d%l T d¥, index i (in upright roman letteris different from the basis
m " index i. From Egs.(9) and (12), we see that, with each
o ) R Walker|¢i<°)) initialized to W) in IOR, the resulting projec-
P({XmYn}) = [T p(X) LT p(¥). tion will lead to a superposition of single-permanent wave
m n functions, all of which are in IOR.
and in the last line we have introduced the shorthand Each permanent evolves by the stochastic application of
R Pqs as follows: we randomly samplefrom the probability
(n({%ah)| = (P 1T B(X), density functionp(X), then applyB(x) on |4”),
m
. |$747) — B 47). (14)
| {yn)) = 1;[ B(yn)[¥r). We will call these permanentendom walkersThe collec-

tion of these random walkers at each imaginary time step is
The METROPOLIS simulation is carried out by sampling the also referred to apopulation
probability density function defined by the integrand in the The population must first be equilibrated so that the
denominator. Given the choice #f; in the identical-orbital ground-state distribution is reached. After equilibrium the
representation, this readily applies to bosons, which is hovground state is given stochastically by the collection of per-
the model calculation by Sugiyama and Koorid] was  manents,
done. The total length of the imaginary time is predetermined

by A7 and the number oB operators in the product. [®o) = 2 |- (15)
The random-walk process naturally causes the walker’s
lll. A GROUND STATE METHOD FOR BOSONS orbitals to fluctuate. In order to increase sampling efficiency,
Jve may associate weightfactorw; to each walketg,). For
xample, we can use the walker's amplitude as the weight
actor,

In this paper, we formulate an approach for ground-stat
calculations of bosons with branching random walks. Ther
are several advantages in implementing the Monte Carl
sampling as a random-walk process. It is a true ground-state Wi = (| )

. . . I | 1/
formalism with open-ended random walks which allow pro- o _ ] )
jection to long enough imaginary times. The sampling pro-A better definition of the weight will be introduced later
cess can be made much more efficient than in standarghen we discuss importance sampling. We duplicate a
AFQMC, by virtue of importance sampling witki; to guide ~ walker when its vyelght excee_ds a preset threshold. Con-
the random walks. It also leads to a universal approach foversely, walkers with small weightgower than a predeter-
bosons and fermions, where it is necessary to use th@ined limit should be eliminated with the corresponding
random-walk formalism in order to implement a constraint toProbability. In this way, the walkers will have roughly the
deal with the sign and complex-phase probldit®,21]. same weight. This results in a branching random walk.

A key observation is that we can choose an IOR single-
permanent wave function as the initial wave functidn). R
At each imaginary time step=n A~ in the projection in Eq. The ground-state expectation value of an observAbie

A. Measurement: “Brute force” and mixed estimators
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<A>gs: @Orﬂ. (16) <'8‘>extrap15 2<A>mix - <A>T, (22
<q)0|q)0> i
2
In principle, we can use the same Monte Carlo samples as <A>extra = <A>mix_ 23)
both (®y| and |®). A “brute force” measurement on the P Ay

. (1) . . . . .
population{|¢;”)} at imaginary timer is given by The second formula is useful for quantities such as density

> <¢_(T>|A| ¢_(T>> profile, which must be non-negative everywhere. These cor-
ij 7l : 17) rections are good only if¥) does not differ significantly

from |®y). In general, we need the back-propagation scheme

to obtain the correct ground-state properties. We will de-

and the estimato(rA)bf is the average of such measurements.scribe this method after introducing importance sampling.

The “brute force” estimator is not useful in real-space-based _

QMC methods such as diffusion Monte Carlo, because the B. Importance sampling

overlaps between different walkers would lead &dunc- In practice, the efficiency of the bare random walk de-
tions. Here the walkers are nonorthogonal mean-field wavgcribed earlier is very low, because the random walks naively
functions, and Eq(17) is well defined in principle. The es- sample the Hilbert space, causing the weights of the walkers
timator is exact for all observables in the limit of lalyg-  to fluctuate greatly. This results in large statistical noise. We
The ground-state energy estimated in this way is variationakprmulate an importance sampling proced{t8,2—using
namely, the computed energy lies higher than the exact valuge information provided by the trial wave functi¢#i)—to
(outside of the statistical error haand converges to the ex- guide the random walk into the region where the expected
act value ad\,, is increased. In practice, however, the use-contribution to the wave function is large.

fulness of the “brute force” estimator is limited to smaller

<A>(T) .
BEERTLPA

systems. In general, it will have large variances. Reducing 1. Importance-sampled random walkers
; ; ; A 2

the variance is expensive becaugeys scales asO(Njyy), An importance-sampled walker also consists of a perma-
where Ny, is the size of the population used to representhent and a weight, although the weight will be redefined
|Do)- . ) ~according to the projected overlap of the permanent with the

_The simplest approach to measuring the observables is thfa| wave function. The purpose is to define a random-walk
mixed estimator, i.e., process which will lead to a stochastic representation of the

- ground-state wave function in the form
<A> = M (18) 6
mix — . :
(Y| Do) |Dg) = >, Wim, (24)

For example, to compute the ground-state energy, we can ' i
introduce the so-called local ener@y[ s, ¢, wherew; is the new weight of the walker. The overlap enters

~ to redefine the weight factor such that walkers which have
(Yr|H| ) large overlap with W) will be considered “important” and
() will tend to be sampled more. Such walkers will also have
greater contributions in the measured observables. Since the
The ground-state energy is obtained from the weighted surpermanent now appears as a rdie)/ (¥+|¢), its normal-

Elyndl= (19

of the local energies associated with each walker, ization is no longer relevant and can be discarded, unlike in
the unguided random walk. The only meaningful information
; (gl POE[r. 1] in |¢,) is its position in the permanent space.
Emix = . (20) . - . .
> (el 2. Modified auxiliary-field transformation
i

Now we describe the random-walk process for the modi-
The local energy for each walker can be computed using théed walkers. The goal is to modiff?,s in Eq. (9) such that
formula given in Appendix A. the random-walk process leads to random walkers with the
The mixed estimator in Eq18) is exact only if the op- characteristics described above in [E24). The basic idea is
eratorA commutes with the Hamiltonian. Otherwise, a sys-the same as that in RefL9]. The main difference is that here
tematic error arises. Nonetheless, the mixed estimator oftefye are dealing with bosons. In addition, the HS fields in Ref.

gives an improvement over the purely variational estimator[19] are discrete Ising-like, which allowed simplifications in
the importance sampling, while here the auxiliary fields are

<qu|A|\pT> continuous and thus a more general formalism will be devel-
W- (21) oped. Our mathematical derivation here follows that of Ref.
T [21]. Up to now we have assumed thalt{|¢#,) is real and
Two formulas are often employed to correct for the systemypositive. There is therefore no additional subtlety with the
atic error, meaning of importance sampling and the correct form of the

(A
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overlap to use, which Ref21] addressed in the context of therefore choose_i to minimize the fluctuation in the weight
fermionic calculations with general interactions. factorw;. We do so by minimizing the fluctuation ®(X, ¢)

To derive the importance-sampled propagator, we plugvith respect tax; at its averagex;=0),
Eq. (24) into Eq.(3b). We will focus on the two-body propa-

gator, which is evaluated stochastically and is therefore af- g | (WBX-%)|0) U2
fected by importance sampling in a nontrivial way. Ix (W] ) & -- o: 0.
~ i i =
The modified propagato?y consists of two parts. The %
first is a rewriting of Eq(5), It is sufficient to expand the exponentials in termsAefand

" require the term linear ir; to vanish, since this is the leading
gL/2A7? — ; f dx & (12X =122 (A7 (x-x)0 (25) term, containingyAr. The others are vanishingly small as
v2mr) ’ A7—0. The best choice fax; that satisfies this requirement

where we have added an arbitrary skifo the auxiliary field

X in the auxiliary-field operator. This is a change of variable (Vo)
in the integral on the right-hand side and does not alter the %= VAT Wy
result of the integral. The new propagaf@gs must preserve _ . .
the representation dfby) in the form of Eq.(24), which This choice depends on the current walker position as well as

dictates that the walkers propagate in the following mannert V), Which is to be expected, since the objective for the shift
is to guide the random walk toward the region where

(T+A7) (7)

(r+A7) |¢| ) (7) |¢' )

(\IfT|¢i(T)) is large. Withx determined, the algorithm for the

~ A7y, (30)

W (W] A7) W (W] ™y (26) random walk, as given in E¢29), is now completely speci-
~ fied.
The second part 0Py is a result of this requirement. By
bringing the term(¥-]| ¢i(T+AT)) in Eq. (26) to the right-hand 4. Local energy approximation
side, we obtain an overlap ratio¥|¢™*")/(W|¢\"). We can furthermore approximate the prefadtd(x, ¢) in
Combining the two parts gives an importance-sampled=q. (28) to obtain a more elegant and compact expression.
propagator of the form After rewriting the prefactor in the form of an exponential,
- ~ expanding3(>2—>_?) in terms ofAr, and ignoring terms higher
Pyd ¢] = f dX p(X)W(X, p)B(X - X), (27)  thanO(A7) in the exponent, we obtain
where I e(l/z)AT(1—xi2)(7i2—3)(_:,(1/2mm_i2 ' (31)
i
W()_(), d)) — <\PT|B()_()_ i)|¢> eg.;_(l/z)g.zz (28) where
(Wrle) V()
— 22 b
is the aggregate of all the scalar prefactors in the modified UiZE <\IT,—|'¢>I (32
TIPi

propagator. This propagator tak{alsz),|¢i(T)>} and advances
the population tdw_(f*AT>,|¢_<T+AT)>}, both of which represent The product is over the basis indéxwhich should be dis-
|y in the form ofIEq.(24).| tinguished from the walker index i. The latter is held fixed

here. The first exponential in E¢31) can be ignored by

lar '\{Igntfecc?r:g) \?virr?c?lljltn?mmc:EZnncegvst)arr%p?r?a%\g/r\S/és SS;m'l le noting that the average value xﬁwith respect to the Gauss-
b ping. MPI€ ian probability density function is unity. Settin§—>1, ie.,

from a normal Gaussian distribution, and apply the Operatoévaluating the exponential at the mean valigd, is justified

B(v— (7) =
B(X-X) to thel _Cllj."er.“ Walkgfﬁi f>' But ngw(\:\)/e accumglate because? andv? do not change drastically within one time
an extra multiplicative weight factow(x, ¢,”) every time step. We also note théﬁiv-2=—<‘I’T|V|¢i>/<‘I’T|¢i>, which is
we apply Eq.(27) . : ! . ;
' the mixed estimator of the potential energy with respect to
|4TAy — B(x=%)| ), (299  the walker|¢;). Combining this term with the similar contri-

bution from the one-body propagator, we obtain a simple,
approximate expression for E@®8),

v ~ Er-E [V, ¢

Here we use the customary notation of vector dot product, W(X, ) ~ e*ETElmad, (33
e.g.,g-iEEp_qxi. Note that the weight facth(i,gbfT)) de-  whereE [V, ] is the local energy oth; as defined in Eq.
pends or{¥+) and both the currertip”) and future(¢™*"”)  (19). Note that, contrary to Eq28), this form depends only
walker positions. on the current walker position and not the future, although in
practice a symmetrized version can be used which replaces
the local energy by the average of the two. For a good trial

The optimal importance sampling is achieved when eachvave function, the local energy fluctuates less in the random
random walker contributes equally to the estimator. Wewalk. If the trial wave function is the exact ground-state

WA WK, w7 (29b)

3. The optimal choice for auxiliary-field shiftx
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wave function, the local energy becomes a constant and thtéme 7' = 7+ 7,,, which consists ofn,,= 7,,/Ar steps. We

weight fluctuation is altogether eliminated. first assume that there is no branchitigrth/death of walk-
The algorithm resulting from Eq33) is analternativeto  er9 in the normal walk, i.e., the weights are fully multiplied

Eqg. (28). The two are identical and exact in the limitr  according to Eq(28). The random walk of each walker will

— 0, but can have different Trotter errors. generate a path in auxiliary-field space. For convenience we

Our importance-sampling formalism has a formal similar-yij| denote the path-dependent operaéilxi f)_)z(d)i(f))] by
ity to that in the diffusion Monte Carl¢gDMC) methods in B, and the weight factow(x”, ”) by W Furth
real configuration spad@8,29. The local energy has a simi- 1 ’ ght Tactorvix, ’¢iA , y W, rurner, we
lar form and our shift to the auxiliary field can be formally will denote the time-ordered produf” " --B{™*”B" by
related to the force bias in DMC. Subtle and important dif- éf"”), and correspondingly the product WfT) by V\Ii(T’").
ferences exist, however, in both the formalism and imple€£ach path defines a product
mentation of importance sampling in these methjii§.

1 oA
ﬁwfr BT (W] 7). (36)
C. Measurement: Back-propagation (V™)
With importance sampling, the mixed estimator in Eq.Collectively these products give a stochastic representation
(18) is given by of e,
(W |A|¢'> Replacing the operatog ™" in the numerator and de-
> w1 nominator of Eq.(35) with Eq. (36), and using the expres-
A, = i (V+| ) (34 sion for [®y) given by Eq.(24), we obtain
mx~— o~
2w 1 .
[ 2 \I,T —MT:T)Bi(T:T)AWi(T) ¢|(T)
For example, the ground-state energy is i <\PT|¢i(T,>>
Ay =
> WE [y, 1] Aop 1
| Po N2 (e
Emix_ 2 w . E \I}T —\M‘r .T)Bi(T .T)Wi(‘r) ¢|(T)
o | (Wrle™)
As mentioned earlier, the normalization ¢f is irrelevant 37

becauseybli only appears in ratios in any formula that definesLjsing the propagation relation in E€9), we can show that
the algorithm: Eqs(24), (28), (30), (33), and(34). We can . , / /

(and shoulginormalize the permanent as needed, and discard B WA W 47y = w7 b 7)Y, (39)
the resulting normalization factor. ,

The mixed estimator is often inadequate for computing.€., the denominator in Eq37) reduces taSw™. This re-
observables whose operators do not commute with th&ultis to be expected, and can also be seen by completing the
Hamiltonian. For example, the condensate fraction in the atAp, Steps of the “normal” random walk we discussed above.
tractive trapped Bose-Hubbard model is greater than 100% ¥Vith importance sampling, the Monte Carlo estimate of the
the Green’s functioric/c;) is estimated using the mixed es- denominator is simply given by the weights at tirrle
timator. Therefore we have to propagate the wave functions T0 simplify the numerator in Eq(37), we associate a
on both the right- and the left-hand side of the operator, back-propagatedvave function with each walkeey ™),

_ <xpT|e—mpﬁg&|cpo> | a5 |79y = [B™ ]|y, (39)
(W+le | dg) Note that each of these’s originates from theAtriaI wave
This estima}tor approaches the exact expectation value in E&?gg%?(ggfrﬁégr}?nsigéogsgtitg dHté}:rr?izggiggr:j%ait?oE_We

back prosagation techniaufid] that reuses the. autary. T2 the wite EG(37) in the following form:

<A>bp

field “paths” from different segments of the simulation to (T,)<,7i<7bp)|,&|¢i(f)>
obtain(®g° = (¥-|e"", while avoiding theN?,,, scaling of . E W (79| {7y
a brute-force evaluation with two separate populations for (App= : — —. (40)
(Pg| and|Dy). Here we give a more formal derivation and 2w
description of the technique, and implement it to bosons. i
At imaginary timer, the population ig| ¢, ™)}, which rep- The estimators in Eqg35) and (40) parallel that of the

resentg®y) in the form of Eq.(24). The propagator in the standard AFQMC estimator in EGL3). The |¢)'s and(7|'s
denominator in Eq(35) can be viewed equivalently as oper- have similar meanings. The only difference lies in how the
ating on the left or the right. The latter is precisely the “nor-paths are generated. Here an open-ended random walk is
mal” importance-sampled random walk fronto the future  used to advance an ensemble of paths froto 7/, which

056702-7



W. PURWANTO AND S. ZHANG PHYSICAL REVIEW E70, 056702(2004

result in fluctuating weights that represent the path distribufewer and fewer permanents in the QengT))} will contribute
tion. In standard AFQMC, a fixed length pattorresponding  to the estimator. This results in a loss of efficiency or an
t0 7pp+ Teq With 74 being the minimum time for equilibria-  increase in variance. Better importance sampling will help
tion or, failing that, the maximum time that can be managedmprove the situation, often greatly, by reducing fluctuations
by the calculationis moved about by theiETROPOLISalgo-  in weights, although the problem will always occur at large
rithm, which eliminates branching by the acceptancelenoughz,,. In our applications to date we have rarely en-
rejection step. In other words, the estimators in 8® and  countered the problem and find that the computed observ-
(40) are the same except for the weights. ables converge quite rapidlgee Sec. V for illustrative re-
Equation(40) defines an algorithm for obtaining an esti- sults.

mate of (A),, via the following stepsi(i) A population is .
ded ‘d{' ¥7)>}_ - h q K i h IV. TRAPPED BOSON GAS: MODEL AND
recorded as|¢; ")5; (il) as the random walk continues, the il EMENTATIONS OF QMC AND GP METHODS
ath history is kept for a time intervaj,; (iii ) the population . . . .
P y P 3y (iit) bop In this section, we discuss the model we use to describe a

(Thp\1 N ; .
{[)} is then generated by back-propagation using Eq'single-species, Bose atomic gas with pairwise contact inter-

(39; (v) this population is maiched in a one-to-one manneraction, confined in a harmonic trap in one or three dimen-

to{|¢fT)?}, weighted by the weighit the later timew!”’, and  sions. We then describe the implementations of both our
the estimator is formed. QMC method and the standard mean-field GP approach to

In the back-propagation the propagators are, as shown istudy this model. Numerical results will be presented in Sec.
Eqg. (39), identical to those in the forward direction, but in V.

reverse order in imaginary time. As in the normal walk, the

normalization of ni(fbp)> does not enter in the estimator. Simi- A. Model

lar to the mixed estimator, this procedure can be repeated We use an effective potential characterized by the low-
periodically to improve statistics. Evidently this estimator is energy atom-atom scattering leng#i, The two-body inter-

exact in the limit of larger;, action takes a simple form
We have assumed that there is no branching within the 4 2
. . : . magh
interval 7,,. In practice, a population control scheme is often U(ri—ry = S(ri—ry). (42)

used which causes the birth/death of walkers. This does not

affect the derivation above or the basic algorithm. The effeCior this effective potential to be valid, several assumptions
on the implementation is that a list of ancestry links must beyre made; for example, the dominant effect is fremave
kept for the forward steps, which indicates the parent of eaclcattering, anghy| is much smaller than the average interpar-
walker at each step in the imaginary-time duratigp As a  tjcle spacing. For more details, we refer the reader to Ref.
result of branching, two or moréy|'s may share the same [3]. |n the alkali-metal gases these conditions are in general
segment of the paths in their “past” and the same parenfe|l met, and the model potential can be expected to give
|4{”). The estimator remains exact for largg, Branching  quantitative information, although care must be taken to vali-
or weight fluctuation does have a more serious practical imgate the conditions.

plication, however. Asy,, is increased, more and mote|'s The real-space Hamiltonian of trapped bosond dimen-

will be traced back to the same parémf)). Or equivalently, sions is

- ~ #? 1 ~ 14mafhi? ~ ~ A~ A
H:Jd3r¢T(r)<—%Vr2+Emwgrz)gb(r)+5Tashfd3rlfd3r2¢T(r1)¢,//T(r2)5(r1—rz)gb(rz)gb(rl). (42

The one-body Hamiltoniai consists of the kinetic energy ~ The discretized Hamiltonian corresponding to E4p) is
and the (external confinement potential. The interaction

HamiltonianV is the sum of all the two-body potentials. The -
characteristic trap frequency sy, which is related to the H :2 {_t[
so-called oscillator length scale lay,= %/ Maw. !

We intro_duce a real-space lattice, with a Iineqr dimension + ;UE (c-Tcic-Tci _ c-Tci), (43)
of L, in a simulation cell of volumé2r;)?. The lattice spac- 2o !
ing is therefores=2r,/L. Further, we will consider only a
spherically symmetric trap here for simplicity. We truncate
the simulation cell accordingly and assume that the wavevvherec;r andc; are the usual creation and annihilation op-
function is negligible outside the maximum sphere enclose@rators at sitd. The Hubbard parametetsU, and « are
by the cell. related to the real, physical parameters as follows:

> clg- 2dCiTCi] + 5kfF, —?o|20iTCi}

jeNN(i)
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t—i (443 (FFT). In this way, the actual application @ /224 jn-
T 2g2’ volves only diagonal matrices; thus the overall cost for each
e (247K gperation is reduced (M log M). We observe in
4mrag our calculations that the additional Trotter error is much
U= qd (44b) smaller than the error already introduced in the original
breakup, Eq(4).
2
S
K=", (440
Ao C. Implementation of the Gross-Pitaevskii self-consistent

where for simplicity we have séi=m=1. The lattice coor- equation

dinatet; is related to the real coordinate By=(L/2r,)r;, and The GP wave functiogp is the single-permanent wave
T, is the lattice coordinate of the trap’s center. Note thgs  function
the true scattering length only in three-dimensional systems.

Nonetheless, we will retain the symbal in Eq. (44b) as a PNz TN = @(M)e(rz) - o), (46)
convenient measure of the interaction strength in any dimenwhich minimizes the expectation value of the ground-state
sion. energy. Such a wave function satisfies the self-consistent

In the discretized model, our resolution is limited by the Gross-Pitaevskii equatiof80-32
lattice spacing. This is consistent with the conditions of va- )
lidity of the model interaction in Eq(41l), as it in a sense _ ﬁ—Vz(p(I’) + Emw2|r — rol2e(r)
“integrates out” the short-range dynamics. In this model, the 2m 2 0 0
lattice constants must be much smaller compared to the (N - 1) 4mragi®
average interparticle spacing, but larger than the scattering +—
length, N m

la] <5< p e, (45) [We keep the prefactaiN-1)/N, since we will study both
_ _ . large and small values di.]
With a negativea, the particles tend to “lump” together due  To compare our QMC results to those of mean field, we
to the gain in the interaction energy. This is a situation wheresarry out GP calculations on the same lattice systems. The

we especially have to be aware of the validity of the effectivediscretized GP Hamiltonian in the second-quantized form is
potential. As mentioned, we will do a consistency check at

the end of the calculation to ensure that the occupancy of the , _ t T 1 = 2.1
. . ) Hgp=-t G C —2dcc|+ = ri—Tol°C'C
lattice points is less than unity. cp= 12 ( 2, e 2dg ') ZKZ i ~Tol'eie

lo()Pe(r) = pe(r).  (47)

i \jeNN()

N-1 —
fo _ 172
B. Implementation of QMC "N Uzi: (niclei - 3m). (48)
Implementation of our QMC method for this model is

straightforward. The number of bagié is equal to the num- Heren; is the expectation value of the density operator,

ber of lattice sites inside the truncated sphere of radjus o <(DGP‘CiTCi|CDGP>
The two-body term in Eq(43) is in the desired form of Eq. n = R (49)
(6). With a negativeU, the HS transformation in Eq7) GRTGP

leads toM auxiliary fields, with one-body propagators in the  We have implemented two methods for solving the GP
form of exgVA7U|xR,), wheref,=clc; is the density op- equation. Thefirst is the usual self-consistent iterative ap-
erator. Our trial wave functiofi¥'y) is the Gross-Pitaevskii proach. We generate an initial density profﬁg’f, by solving
(GP) wave function®gp, which we describe in the next sub- the noninteracting Hamiltoniawith U=0). The density is

section. _ o _ _fed back to construct the initial Hamiltonia#{2) in Eq. (48).
hWe men(;mn here a technical point 'nr;‘hg !mplfme”;at'on'Direct diagonalization of this one-body Hamiltonian yields
The ground-state projection in our method involves the aPjts ground stat@gg. We thus obtain an updated denﬁy

p_IlcaIt|on of one—tbody pr];opa?ator _||[1h.the forlrin tef‘ o'? f‘ and a better Hamiltoniaﬁgg,. This procedure is iterated until
singie-permanent wave func 'Q'@-_ IS usually transiates e gesjred convergence criterion is satisfied. We choose our
into a matrix-vector multiplication in the computer program, convergence condition to be

which generally cost€©)(M?). Often there are special prop-

erties of A that can be exploited to evaluate the one-body dr|e®0(r) - ¢O(r)|

propagator more efficiently. In the Bose-Hubbard Hamil- ¢ 4

tonian, the only nondiagonal part of the Hamiltonian in real 1 <€ (50)
space is the kinetic operator i We can separate it from the > J dr ™8 (r) + o(r)|

other one-body operators and apply the kinetic propagator in
momentum space. Wave functions are quickly translated bawvheree is a small numbe¢usually on the order of 182 for
tween these two representations using fast Fourier transforntgouble precision numbexs
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The secondmethod we use to solve E48) avoids the TABLE I. Comparison of QMC calculation against exact diago-
diagonalization procedure. It is closely related to the QMCnalization(ED) and the Gross-PitaveskiGP) method. The system

method, both computationally and formaligee Sec. Vi has 13 sites, 5 particles=2.676 U=-1.538 k=0.3503. In the
We use the ground-state rO-ECEﬂATAGP QMC calculation, we usa7=0.01,7,,=4.0, and the GP solution as
9 Proj ' the trial wave function.

n—o

—AmH sp\ g (0) ground-state i )
(€M) WO — |Dgp. (51 Type  energy (M Viap (V,e)  Cond. frac.

The initial wave function is arbitrary and can be, for ex ED ~1.009 4.278 08427 =6.129 95.59%
ample, chosen again as the solution Witk 0. The feedback QMC  -1.0082) 4.2793) 0.84235) -6.1292) 95.59%
mechanism through the density proffieremains the same. GP -0.493 3.919  0.7504  -5.162 100%
By using FFT for the kinetic propagator as described in Sec.
IV B, a speed gain is obtained, especially for large systems.

In practice, we have often found this method to be a simpler (cle)) =2 noxlixa(i),
and faster alternative to the first method of diagonalization a

. . -
and iteration. Note that the scalar terré[éN—l)A/N]UEini then the largest eigenvalue divided by the total number of
does not affect the projection process, but withl@, corre-  particles gives the condensate fraction.

sponds to the original many-body Hamiltonian in that

(P Had Pp) =(DgplH|Dgp.

A. Comparison with exact diagonalization: ag<0

The many-body Hamiltoniad3) can be diagonalized ex-
V. RESULTS actly for small systems to benchmark our QMC calculation.
We compare our QMC results with exact diagonalization for
In this section, we present results from our QMC and GPa one-dimensional lattice of 13 sites, and study its behavior

calculations in one, two, and three dimensions. To validatgor different values of the interaction strengthand number
our method and illustrate its behavior, the majority of theof particlesN.

calculations will be on systems where exact results are avail- The first system we study has five bosons, with

able for benchmark. These include small lattices, which car-2 676 U=-1.538, andx=0.3503. These values were de-

be diagonalized exactly, and the case of attrac#i¥enction  rived from the physical parameters,,=8546 A and ag

interactions in one dimension, where analytic solutions exist=-5.292x 106 A~ (Recall that, by our definitiorgg in 1D

For the purpose of presenting the method to facilitate impledoes not have the dimension of length, and is not the scat-

mentation, some numerical results and comparisons af@ring length itself. For all systems in this section and in

shown in detail to illustrate the behavior and characteristicsec. V C, we multiplied, U, and« by a factor of 18 A2 to

of the method. make them dimensionless and close to unity. Our energies
Most of the results we present here will be for attractiveare therefore dimensionless. Table | shows the comparison of

interactions, where the method is exact and is free of anyhe quantities computed using three methods: QMC, GP, and

phase problem21] from complex propagator¢see Sec. exact diagonalizatiofED). The statistical uncertainty of

V C). Such systems therefore provide a clean testground fapMC results is presented in parentheses. We see that the

our method. In addition, with attractive interactions the con-aggreement between QMC and ED is excellent. GP makes

densate in 3D is believed to collapse beyond a critical intersignificant errors here because of the sizable interaction

action strength or number of particles. Mean-field calculastrength as well as the small number of particles.

tions [33] estimate the collapse critical point to be about To jllustrate the convergence in imaginary time step

Nas/an,==-0.575. The exact behavior of the condensate neafe show in Fig. 1 the total energy and the average trap

the critical point is, however, not completely clear, as many-, Y .
’ ' ) ' nergy(Vyay- The former can be obtained exactly from the
body effects are expected to have an impact. At the end o? 9y<Virap y

! . . L mixed estimator while the latter requires back-propagation.
this section, we will also show some preliminary results for

! ; S .~ To show the Trotter error, we have deliberately done the
larger systems with both attractive and repulsive interactiong lculati
in 3D Calculations up to rather largr values. We see that both

. %uantities converge to the exact resultsAas— 0.
We measure the ground-state expectation values of th ; :
To illustrate the convergence of observables in back-

following quantities: the ground-state energy, kinetic energypropagation length, we show in Fig. 2 the various observ-

(T), external confining potentialVy,p), interaction energy  ahles computed by QMC as a function gf, Separate cal-
(V,g), density profile(fy), and the condensate fractiooften  culations were done for different values of, For all
abbreviated “cond. frac.” in the tables and figyréhe con- ~ calculations, a smalkr value of 0.01 was used. We see that,
densate fraction is defined as the largest eigenvalue of thier observables that do not commute wl%h the mixed es-
diagonalized density matrix3]. If we write the one-body timates(7,,=0) are indeed quite biased. The linear extrapo-
Green's-function matrix(c/c;) in terms of its eigenvalues [ation in Eq. (22) with the variational(GP) estimate still
{n,} and eigenvector§y,(i)}, leaves a significant error in most cases. In fact, for the kinetic
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1 QMC (¥ = nonint) «o—
0.850 | MC —— 4 2lo T 1
Q‘ _\_ QMC (¥7 = GP) —— |
Exact diag. - GP e
§ »\Q\ 4
0.840 [ i g FYAN j
& 8F Mol J
":5 7L b d
38 ' _
0830 | . T 4
>X= ! 4
g L 1. A i I i 1 1 1 I I3 1 1
0820 F 4 0051152253 354 0051152 253 35 4
Top Top
0si0 b FIG. 3. Independence of QMC results on trial wave functions
-1z . , N (“GP” for Gross-Pitaevskii, “nonint” for noninteracting solution
0 005 01 015 02 The system is the same as in Table |, except that here we use six
0.800 L ! 1 ! particles. The horizontal axes are the back-propagation length.
0.05 0.1 0.15 02

time 7,, for a system of six particles on 13 sites. The calcu-
FIG. 1. Convergence of QMC observables with. The main  lations lead to the same results. The qualitylaf however,

graph shows the trap enery, 2, while the inset shows the total does affect the. variances of the observable; and their conver-
energy,E. The energies and r are dimensionless, as explained in gence rates withr,,. For example, the noninteracting wave
the text. The system has the same parameters as in Table I. Linégnction, which disregards the two-body interaction, is more
connecting QMC data are to aid the eye. extendedin its density profilg¢ than GP. Its mixed estimator

is therefore worse than that with the GP trial wave function.
energy it gives a worse estimate. With back-propagation, allhe mixed estimator for the ground-state energy is exact in
guantities converge to the exact results rather quickly, byoth, but the variance is slightly larger with the former.
Top~ 2. (The total energyH) is of course exact for any, We now show results for different systems withfrom
including 7,,=0.) The energy expectation values show thattwo to nine bosons and varying interaction strengths. We
this is a system with significant interaction effects. Alkali- note that if we keep the produ@i—1)U constant, the Gross-
metal systems at the experimental parameters often havitaevskii equation predicts the sarper-particle energies
weaker interaction strengths, and the convergence rate is eand densities. For brevity, we shall refer to the curve in
pected to be even faster. which (N-1)U is constant as th&P isoline Deviation from

Our QMC method is exact and therefore independent othe GP isoline is therefore an indication of the effect of

the trial wave function¥V;, except for convergence rate and many-body correlations. In order to show results on multiple
statistical errors. In Fig. 3, we show QMC results obtainedsystems at the same time, we will scan GP isolines. Figure 4
using two different¥1’s, namely the noninteracting solution shows the QMC and GP results as a function of the number
and the GP wave function. The convergence of condensatf particles. In the GP calculations, the per-particle quantities
fraction and trap energy are shown versus back-propagaticewre constants. The QMC results, on the other hand, capture

T T T T
-0.40 | -
-0.50 100
-0.60 b @99 - QMC ——
070 F i 8 " Exact result -------
53] i [c]- J— 1
-0.80 | - i
o7 [ -
-0.90 | 18
Q
.100.@-—5—-{@2 96 T
""""""" FIG. 2. Convergence of the computed observ-
o . . ] % . \ ] ables versusr, The system is the same as in
0 ', 2 0 1 Top 2 Table I. The different panels show five different
. . i . . . . observables. The horizontal axes are the back-
a4r 1 o8 {1 sof ] propagation length. Exact and GP results are also
#EEE I 351 om shown for comparison. Solid lines are present
ol 1 s only to aid the eye.
2
s 08
& S
40 4 “o7s
0.76
38} {1 o7
1 1 ' 1 -6.4 1 1
0 1 2 0 1 2 0 1 2
Top Top Top
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00 ———r——r— Q9 T3 TABLE II. Comparison of QMC and GP results to available

10 ¢ . exact results. The system has 20 particles@n@.154. A lattice of
ERE: ek 1024 sites was used, with7=0.01 andr,,=2.5. For comparison,

= 12} e QMC results without droplet correctiofDC) (see Appendix B 2

S 3 are also shown.

~ o4t
el Exact‘gi':c et Ground-state R
16 G% ........... ] Type energy (T) (V,g)  Cond. frac.

Py Y a3
2 3 4 7 .
56 8 0 234567859 Analytic result  -1.971

N N
QMC -1.9648) 2.0448) -4.0074) 99.76%
FIG. 4. Comparison of QMC, GP, and ED results for different QMC (no DC)  -1.8518) 2.1578) -4.0074)  99.76%
systems. Calculations were done along a GP isoliNe-1)U GP -1.784 1.776 3561 100%

=-2.3@ for up to nine particles in 13 sites. The graphs show the
total and interaction energigeer particle QMC and exact results

are indistinguishable. GP is accurate in the limit of weak correlatlonenergy without statically confining to the central sites, result-
but deviates more from the exact results as the system becomes . )
more correlated. ing in a more extended one-body profile.

the effect of correlations. Both the total energy and the inter-
action energy are lowered from the GP results. The exact )
results deviate from GP more as the system becomes more The problem of an arbitrary number of untrapped bosons
correlated, i.e., wheb) is increased or wheN is decreased. interacting with an attractiveS potential in one dimension
AlthoughN is too small here because of the limitation of ED, can be solved analyticall}g4], yielding analytic expressions
the results are representative of the general trend in largder the total energy and density profile. In this section, we
systems(see below carry out QMC and GP calculations and compare our results
Figure 5 further illustrates the effect of particle correlationagainst these analytic results, on systems of up to 400
in this system. Although the exact interaction energy is lowe0sons. The Hamiltonian in the continuous real space is
than that of GP, the exact density profile is more extended. N N
TAhIS is also manifested in the average trap potential energy H=- %2 = - %g D 80 = X)). (52)
(Virap/N, where the QMC results are 0.1981 and =10
0.160%2) for N=2 and 9 particles, respectively, while the 1o jnteraction constantg>0) is related to our Hubbard
GP value is 0.1501. In GP, interaction energy is lowered by

i creasin ricle overlap. namelv. by shrinking the profi parameters byy=|U/\t. The ground state of this Hamil-
| ¢ ealgt gtﬁa cetlol € ?pa a ey,t yls th 9 te P ct)' €-tonian is anN-boson bound state. By fixing the center of
n reality, the particies find a way to lower the interaction g ak=0, we can eliminate the contribution from its over-

B. Comparison with analytic results in 1D: ag<0

i>j=1

055 — . . ' . . . . . all motion, which leads to the following analytic expressions
QMC,N =2 +—— for the density profild35]:
0.50 - QMC,N =9 tmsms ] y profile35]
(] - J— N-1 _
0.45 1 n(N I )Ze gnNx|/2
oa0 | P =39 (-1 : L (53
: =1 (N+n-1)! (N-n-1)!
0.35
z omf and the total energy,
8 o025 E=-g0?N(N*- 1). (54)
0.20 . .
In our QMC calculations, we again put the system on a
0-15 1 real-space lattice. The lattice size is chosen to be large
0.10 - enough so that discretization errors are comparable to or
0.05 smaller than statistical errors. As the ground state of the sys-
000 L . tem is a droplet in the absence of the external confining
2 10 potential, the center of mass can slide in the calculation due

Lattice site to random noise. We therefore need to subtract the center-of-

FIG. 5. The normalized densitimensionlessat different lat- ~ Mass motion, which we will refer to as tioplet correc-
tice sites. Results are for 13-site systems along the GP istMne 0N Technically, this can be accomplished conveniently in
~1)U=-2.30. The normalized GP curve is identical for any num- the random walk by treating the system with respect to its
ber of particles along this line. QMC results are showrNer2 and ~ center of mass. In Appendix B, we describe our method for
N=9. The QMC results have very small error bars and are indistinthis correction, which is applicable in any situation where the
guishable from ED(not shown. The QMC density profiles are center of mass and relative motions need to be separated. In
more extended, although the interaction energies are lower than GBUr calculations, the correction affects the kinetic and total
as shown in Fig. 4. energies as well as the density profiles. The results shown
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o A ' ' "Analytic 10 % 1073, : : : :
sox10f ' FoJ— 3 GP -eeeerenenns
QMC — x‘ QMC,N=5
°r = QMC, N =20 —v— |
T 10 ] Y QMC, N = 100 —o—
40 g
2
‘2 10 "
@ 34t -200-100 0 100 200 ]
[a]

20

Density

1 ) ) ) !
-300 -200 -100 0 100 200 300
Lattice site

0.0

FIG. 6. Comparison of calculated density profiles from QMC
and GP with analytical results for the system shown in Table Il. The
densities are normalized. The QMC error bars are displayed even
five data points to avoid cluttering the plot. The inset shows the e
same curves with logarithmic vertical scale, indicating that at large (] 50 100 150 200

distances the density is exponential. Lattice site
below were all obtained with this correction applied. FIG. 8. Comparison of the density profiles from QMC and GP.

We first study a system of 20 particles wig=0.154. The normalized densities are shown along the GP isdiel)g
Table Il shows the energies, and Fig. 6 the density profiles=4.0 for severaN values. The system is the same as that in Fig. 7.
This is a system where mean field makes significant errorsthe GP density is the same for ahlyon the isoline.

Our QMC results are in excellent agreement with the exact
results. We now study the system along a different line, holding

We next scan systems with various numbers of particleshe interaction strength fixed while scanning the number of
by following the GP isoline(N-1)g=4.0. The energy per particles, agajn up tdN=400 particles. Figure 9 shows the
particle is shown as a function &f in Fig. 7, for up to 400 behavior of (H)/N3, with g=0.0403. At largeN, the total
particles. Figure 8 shows the density profiles for up to 10Qnergy is roughly proportional tb®. Compared to Figs. 7
particles. Again, the agreement between QMC and exact reand 8, the interaction is stronger at largérand weaker at
sults is excellent. As the interaction strengtts increased or |lower N, with the crossover &t~ 100. Most of the calcula-
asN is decreased, mean-field results deviate more and momtons are therefore more challenging numerically. Again
from the exact results. For example, as we go frgm QMC was able to completely recover the correlation energy
=0.01(N=400 to 10 times the strength along the isoline, missed by GP. At larg#l, smaller times steps were used and
the systematic error in the GP total energy increases roughly

-1.60 — , , , , . T
from 0.5% to 5%. Analytic —o—
3 QMC —x—
-0.164 T T T T T T T Pl
-0.166 | E 164 | i
- o
........... &
5 = ]
-0168 | ./’__A_,’ ] FIJ ............
P
Z = |\ T
~ I b
N -0170 b }/ | -168F x ]
/ \EMA z.X ¥ 3
y :
0172 .
Analytic o 172 ) ) ) ) 1 1 1
0474 | i QMC +—>— | ] 50 100 150 200 250 300 350 400
’ GP e N
0 50 100 150 200 250 300 350 400 _ _
N FIG. 9. Comparison of computed ground-state energy for differ-

ent numbers of particleN. The interaction strength is held constant
FIG. 7. Comparison of the energy from QMC with the exact at g=—0.0403. The total energy divided i is shown as a func-
answer and GP for a different number of particles. Energy per partion of N for QMC, GP, and exact calculations. Conservative QMC
ticle is shown along the GP isoli®l-1)g=4.0. We use a lattice of parameters were used, witf},=4.0 in all case, and7=0.01 for
1024 sitesA7=0.01, andmn,,=4.0. N <200 andA7=0.005 otherwise.
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TABLE Ill. Comparison of QMC results against exact diagonal- particles can avoid each other more effectively by means of
ization (ED) and the Gross-PitaveskiGP) method in 1D. Here we  many-body correlation. The QMC correctly recovers this
use 13 sites and 4 particles+2.676 U=+1.538x=0.3503A7  correlation, which lowers the total energy without spreading

=0.01, andmn,,=2.5. the density as much as GP does.
Table IV shows results for bosons in a two-dimensional

Ground-state . . trap, using a & 4 lattice. The GP solution also exhibits the
Type energy (M Map  (Vzg)  Cond.frac.  same behavior as in the 1D calculation, in that the density
ED a2 118 17 e sesw OSSO eses, the QMG statistical erro

0, . !

QMC 4.242) 1.182) 1.7908) 12738)  98.6% bar on the condensate fraction was not computed directly, but
GP 4.43 1.03 1.800 1.599 100%

we estimate it to be on the last digit.

As mentioned earlier, the complex propagators cause
, . roblems. Since the orbitals and walker weights become
more computing was necessary to reduce the statlst'lcal Eomplex, asymptotically the phase of these weights will be
rors. (Note that the error bars appear larger at smallén  hiformly distributed in the complex plane. The denomina-
the plot because of the division By*) tors in Egs.(34) and(40) will be dominated by noise, caus-
ing the Monte Carlo sampling efficiency to decay and ulti-
mately destroying the algebraic scaling of QMC. This is the

We have shown that our QMC algorithm is exact andso-called sign or phase probldi9,21]. In real-space meth-
works well for a wide range of systems with attractive inter-ods, this problem is connected to fermions, but here we have
actions. If the interaction is repulsiyas>0, or equivalently a situation where a phase problem appears in the ground
U>0), the one-body propagators resulting from the HSstate of a bosonic system. Physically, it is easy to see why a
transformation become complex in the form of phase problem must occur. Our many-body wave function is
exp(iVA7UxN,). The same algorithm applies in this case asbeing represented in IOR, with only one orbital in each
well. In principle, the complex one-body operator only re-walker. With a repulsive interaction, the only way to reflect
quires a change to the corresponding complex operationsorrelation effects, i.e., particles avoiding each other, is to
But in practice a serious phase problem occurs, which causd#sake the orbitals complex.
the calculation to lose efficiency rapidly at larger interaction As we see below, our algorithm remains efficient and
strengths. We discuss this problem and how to control igives accurate results for large systems with scattering
below. Our initial studies indicate that, for moderate interaclengths corresponding to experimental situations in 3D. As
tion strengths, the algorithm as is remains very efficient andhe interaction strengths become much stronger, the phase
gives accurate results, allowing reliable calculations for paproblem will ultimately make the approach ineffective. We
rameters corresponding to experimental situations in 3D. have done preliminary calculations in which we control the

We benchmark our algorithm in one- and two- phase problem by applying a phaseless formalism described
dimensional systems with repulsive interactions against exih Ref. [21]. Our results indicate that the systematic errors
act diagonalization. Table Il shows results for a one-introduced by the phaseless approximation are small for
dimensional system, with 13 sites and four particles. Thenoderate interaction strengths. We expect to therefore be
agreement between QMC and exact result is excellent. Reable to obtain accurate and reliable results for scattering
sults from GP are also shown. The GP and QMC densityengths well into the experimental “strong interaction” re-
profiles have roughly the same size, as is evident from thgime achievable by Feshbach resonance.

values of(Vi,,. However, GP overestimates the interaction

energy because it does not take into account the particle-
particle correlation. In the mean-field picture, expanding the
density profile is the only way to lower the interaction en- In this section, we present some test results on realistic
ergy, so that the particles overlap less with each ofinate ~ Systems of trapped particles in three dimensions. QMC re-

that (V. is indeed slightly larger for GPIn reality, the sultg were obtained with back-propagation and conservative
(Mirap ghtly 1arg P Y choices ofA r and convergence parameters. We also carry out

the corresponding Gross-Pitaevskii calculations, and make
comparisons against our exact QMC results. We choose a
trap with a characteristic lengt,,=8546 A. The trap was
discretized into a 15 15X 15 lattice, in a range that corre-
sponds to 5.2&,, Below we will again use reduced units
(see Sec. IV Afor the energies. To relate them to realistic
physical situations, a multiplicative factor proportional to the

C. Comparison with exact diagonalization:as>0

D. Reallistic calculations in three dimensions

TABLE IV. Comparison of QMC calculations against exact di-
agonalization(ED) and Gross-PitaveskiiGP) projection in a 4
X4 lattice, with four bosons. t=0.2534,U=+0.3184,«
=3.700,A7=0.01, andn,,=2.5.

Ground-state

Type eneroy m Vrap (Vo) _Cond. frac. inverse atomic mass is needed. B#Rb atoms, this factor is
ED 6.000 1.818 3.8326 0.350 97.8%  about 5.7 nK.

QMC  6.00%6) 1.8172) 3.83252) 0.35%5) 97.8% Table V shows the result of a QMC calculation for 175
GP 6.067 1763  3.8359  0.469 1009% Particles in a three-dimensional trap. The scattering length is

as=—22.4 A. In this regime, the GP solution is a good ap-

056702-14



QUANTUM MONTE CARLO METHOD FOR THE GROUND... PHYSICAL REVIEW E 70, 056702(2004)

TABLE V. Comparisons of QMC and GP calculations for 175  TABLE VI. QMC calculation of 100 particles in a three-
particles in a 3D spherical trap, witla;=—-22.4 A and ay, dimensional trap. A lattice of 1815X 15 was used. The param-
=8546 A. The energies are displayed as per-particle quantitiesters correspond ta,,=8546 A anda;=80 A. The quantities dis-

Both the QMC and GP results are extrapolatedto- 0. played are for per particle.

Ground-state R ) Ground-state ) )
Type energy M (Virap (Vo)  Cond. frac. Type energy (M (Virap (Vo)  Cond. frac.
QMC 16.9796) 16.445 6.541) -6.034) 99.73% QMC  24.6879) 9.5739) 11.9335) 3.18%3) 99.80%
GP 17.115 15.60 6.77 -5.25 100% GP 24.922 9.281 12.028 3.612 100%

proximation to the exact ground-state wave function. We seeonnection with the GP mean-field approach. Our approach
that this is indeed the case in Table V. The interaction energyses an HS transformation which leads to integrals of single-
is lowered in the many-body calculation as expected. Interparticle operators over auxiliary fields. The mean-field solu-
estingly, the external potential energy is lower than in GPtion can be regarded as the leading term in the stationary-
Consistent with this, the exact density profile is tighter thanphase asymptotic expansion of the exact soluf@s]. Our

in GP, as shown in Fig. 10. The trend here appears differemethod evaluates this exact solution, which is in the form of
from what we observed in small 1D trapped systems in Figmany-dimensional integrals, by Monte Carlo sampling. In
5, but consistent with the large untrapped systems in Fig. &his section, we comment further on the formal connection
We are presently carrying out more calculations to cover detween our importance-sampled QMC and the GP as done
wider range of parameters and study the role of dimensionby projection(the second of the two GP methods discussed
ality. in Sec. IV Q.

We now turn to bosons with repulsive interactions in a Let us reconsider the two-body propagator in the modified
three-dimensional trap. We again use ax1BX 15 lattice,  AF transformation, E¢(25). Let us suppose that we are now
and simulate 100 bosons. We choose a scattering leggth  taking the first QMC step, where the walker and the trial
80 A. This value is close to the experimerta singlet[36]  wave function are both¢) (=|¥1)). Following the discus-
or #'Rb triplet[37] scattering lengths. In Table VI, we show sion of the optimal choice of in the same section, Sec.
the calculated energies and condensate fraction. For this inq B, we know thatx=0 is a stationary point with the choice
teraction strength, the impact of the phase problem on the
statistical error is small, and the QMC calculation is very

efficient. The true condensate is, like in the 1D repulsive % =—- A7y, = - \EM (55)
case, tighter than that predicted by GP, with lower interaction (¢l
energy.

We can approximate the integral in E@5) by the value of
VI. DISCUSSIONS the integrand ak=0, which can be justified in the limit of
small A7. More explicitly, with a change of the integration

variabley= VA7X, the integral can be written as
The QMC method we have presented, which goes beyond

A. Connection between QMC and Gross-Pitaevskii projections

mean field and includes many-body correlations, has a deep ©  eYi2Ar
e(U2A7? — oA (1/2v?-v5] f d /(0-v)
- y A A _ :
40 o N2mAT
35T As A7— 0, the dominant contribution to the integral comes
a0 from the maximum of the Gaussianyat 0. The leading term

of the importance-sampled many-body propagator is there-

N
2]
u

:7"

= fore

2 20f A

= e—AT[K—Eiaaﬁu/z)Eiﬁ] (56)

g5t ,

]
10 whereK is the one-body term in the original Hamiltonian.
o5 | Under this approximation, our random walk becomes deter-

ministic, needing only one walker. If for the next step we use

0.0 L L : the updated wave functiopp’) to evaluate the nevv;} in
—-20000 -10000 0 10000 20000

Distance (A) Eqg. (55), we obtain a self-consistent projecti(_)n vyith one-
body propagators. In fact, the one-body Hamiltonian in the
FIG. 10. Comparison of density profiles from the QMC and GP exponent of Eq(56) is precisely the mean-field Hamiltonian.
for 175 particles. The system is the same as described in Table \For example, for the Bose-Hubbard model the last two terms
The QMC profile is more peaked and tighter than GP. in the exponent lead to the GP mean-field potential
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us (ﬁiﬁi _ %ﬁlz) (57) falgorithm appears as if it_only involved a single particle. This
i is not true, of course, since both the shiftand the local
i .. energy scale withN (see Appendix A As a result, a smaller
Apart from the factor(N-1)/N which approaches unity in  tjme step must be used for larghk The above argument
the limit of largeN, we have recovered the GP propagator.syggests that scaleroughly as 1N, which we have used
The projection with Eq(56) lowers the variational energy as a guideline in our calculations to select the rangaofo

for any initial |$) and is stationary whend¢) is the GP  yse. Extrapolations with separate calculations using different
solution. This is why GP is the best variational wave func-a ; values are then carried out.

tion that has the form of a single permanent, and hence a

reasonable trial wave function to use for most of our QMC

calculations. C. Conclusion and outlook
It is also clear from the discussion above that the

importance-sampling formalism allows us to have an optima

form of HS transformation, in that the HS propagatf=

involves only the differencé—-v. In other words, although in

| In conclusion, we have presented an auxiliary-field QMC
algorithm for obtaining the many-body ground state of
bosonic systems. The method, which is based upon the field-

E we write the decomposition for the bare interactiontheoretical framework and is essentially exact, provides a
g.(7) P means to treat interactions more accurately in many-body

term, the importance-sampling transformation effectively iN-o\ctems. Our method shares the same framework with the

;L%?:Ltji%?lsa?\ dmaﬁl?)c\g%de ?_?g ﬁgrgggﬁw?ﬁsggl 02 rtgseidt[l'gll V:’Jaa\f P approach, but captures interaction and correlation effects
o . A =5 y 9Y2ith a stochastic ensemble of mean-field solutions. We have
dratic interaction term(v —v)?.

: . illustrated our method in trapped and untrapped boson
To summarize, our QMC method reduces to GP if Weyy,mic gases in one, two, and three dimensions, using a real-

evaluat.e th'e many-body propagator. by the statlonary-powgpace grid as a single-particle basis which leads to a Bose-
approximation, using only the centr_0|d of_the G_au55|an. ThEHubbard model for these systems. We have demonstrated its
full .metho.d evaluates the many-dimensional |_ntegral OVerability to obtain exact ground-state properties. We have also
auxiliary f_|elds e>_<act|y by Montg Carlo calcu_lauon. It €apP- carried out the GP mean-field calculations and compared the
tures the interaction and correlation effects with a stochastic, o jictions with our exact QMC results. Our method is ca-

coherent eqsemble of m.ean—fleld solutions. T_h_e structure gf_pio of handling large systems, thus providing the possibil-
the_cal_culatlon can be viewed as a superposition of the G ty to simulate system sizes relevant to experimental situa-
projections that we have degcnbeq. Our method, theref(_m?’rons. We expect the method to complement GP and other
prqwdes a way to systematically improve upon GP Wh'leapproaches, and become a useful numerical and theoretical
using the same framework. tool for studying trapped atomic bosons, especially with the
growing ability to tune the interaction strengths experimen-
tally and reach more strongly interacting regimes.

Because of the structure of QMC as a superposition of GP  From the methodological point of view, more work re-
projections, our method scales gracefully with system sizemains to be done with the repulsive case to deal with the
As discussed in Sec. IV B, the bulk of our method scales aphase problem. We have shown that our method as it stands
O(M log M), with the significant speedup from using fast can be very useful for moderate interaction strengths. For
Fourier transform. For example, the QMC calculation shownstronger interactions, our preliminary study indicates that the
in Table VI required fewer tha8 h on asingle Alpha EV67 phaseless approximatiof21], which eliminates the phase
processor. The 1024-site QMC calculation shown in Table llproblem but introduces a systematic error, is very accurate
took abot 4 h to getgood statistics, with very conservative for scattering lengths well into the Feshbach resonance re-
choices ofAr and other convergence parameters. It requiredjyime. We are currently examining this more systematically to
about 1.3 gigabytes of memory, largely because of backeguantify the extent of the bias. Because of the simplicity of
propagation path recording. In contrast, treated fully, the latthese bosonic systems compared to electronic systems, they
ter problem would mean the diagonalization of a sparse, Hemprovide an ideal testbed, where for small sizes the problem is
mitian matrix containing8x 10*})? elements. Although this readily solved by exact diagonalization.
can be reduced by exploiting symmetries, exact diagonaliza- A variety of applications are possible. The ground state of
tion of this problem is clearly not within reach with comput- the Bose-Einstein condensates with both attractive and repul-
ing capabilities in the foreseeable future. sive interatomic interactions can be studied for various inter-

We typically use hundreds of walkers in our calculation.action strengths, including the strongly interacting regime
The stochastic nature of QMC means the number of walkergeached by Feshbach resonance. They can also be studied in
fluctuates due to branching and killing of walkers with very different dimensions and under different conditions. In par-
large and very small weightsee Sec. I). The population ticular, it would seem straightforward to generalize our
therefore must be controlled to ensure that it does not growresent framework to study rotations and vortices, since we
or decay too much, and that the walker weights have a reaare already dealing with complex propagators and wave
sonable distribution. Our method to control the population isfunctions in the repulsive case. In addition, it will be inter-
similar to that discussed in R€i26]. esting to treat boson-fermion mixtures with our approach. As

We comment on the effect of the number of particlds, mentioned, the auxiliary-field method is already widely used
on computational scaling. Because of the use of IOR, thdo treat strongly interacting fermion systems.

B. Computing
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batical visit, where part of the work was carried out. We alsogliminated by fixing it at the origin, as in E¢53). In the
thank the Center of Piezoelectric by DesigbPD), where  QMC calculation, however, the orbitals fluctuate as they are

part of our computing was performed. propagated b)@()?—)_?), where the random fieldé are drawn
from a Gaussian probability density. Random noise will in-

APPENDIX A: IDENTICAL-ORBITAL REPRESENTATION evitably cause the c.m. of the system to slide, undergoing a
free diffusion whose average position is the origin.
In fermion calculations, we must use &< N matrix to Left unchecked, this spurious c.m. motion will lead to an

represent a determinant, because the orbitals must be mutartificial broadening of the density profile. To correct for it in
ally orthogonal. In the boson case, however, this restriction ishe density profile, we could simply shift the c.m. of every
absent. The most general form of a many-boson permanentvgalker back to the origin. However, the importance-sampled
expensive to compute, having complexity @®{NM!). But  propagator involves ratios of overlaps with the trial wave
we can choose to make all the orbitals identical. In matrixfunction (¥+|¢;), which would have to be corrected in the
language, we will have only aM-row column vector. We random walk whenever a shift is made.

will term this representation thieentical-orbital representa- Our solution is to let the trial wave function slide along
tion (IOR). Each many-boson wave function in IOR has thewith the walkers. In other words, we rewrite the kinetic en-
form of a GP mean-field solution. Two conditions are necesergy operator as

sary for this choice to be viable in the QMC, namely that an L ~

initial trial wave function of this form is allowed and that T=Tem+T, (B1)
successive projections preserve the form. The only require- -

ment for the former to hold is that the wave function in IOR Where Tc, represents the c.m. kinetic energy aiitl the
not be orthogonal to the true many-body ground state, and ifiternal kinetic energyn the c.m. frame. The total Hamil-
is straightforward to show that E¢L2) holds for a|¢) in this ~ tonian is given by

form. More complex wave functions can always be gener- A A A, e a -

ated by a linear combination of such wave functions. In fact, H=Tem+ T +V=Tem+H" (B2)

this is what we accomplish through our Monte Carlo simu-The quantities that we wish to compute are governed by the

lation. . . “internal” Hamiltonian H'. Since V involves only relative
In operator language, a singkeboson wave functiofe) } , i ~
is given by coordinates among the particles, it commutes With, ; or

win.oa R more generally,
|¢)=3'd" - $']0)=(8)" 0), o
N [Tem,H']1=0. (B3)

“ In this way, the importance-sampled QMC propagation is
where qﬁTEEachﬁa. In matrix form, |¢) would be M XN o P P Q propag

: . ' determined byH’. The motion of the c.m. in each walker is
matrix ¢» whose columns are identical. The overlap of two o S A
such wave functions is given by a separate free diffusion which is governed y,. In the

random-walk process, we are now free to correct for the c.m.

_ V= NI (ot N motion by shifting the walkers back to the origin whenever
(i) =pelys - @) =NL (' )", necessary. For consistency, this correction must be applied
both in the normal random walk and in the back-propagation

where the boldface symbokp and ¢ represent the single-  j g0

column vectors fory and ¢, respectively. Similarly, for any

one-body operatoh, 2. Separating the center-of-mass kinetic energy
~ The moving trial wave function, however, poses a prob-
— T, i T, N-1 ’ ’
(WAl =N NG -A - D) )", (A1) lem for the calculation of the kinetic energy. Now the orbit-
. als are free to slide, and the diffusive motion of the orbital’s
whereA is the matrix forA. The matrix element of a quartic c.m. is no longer suppressed in the laboratory frame. When

(two-body) operator is given by we use the usual term in the Hamiltonian in Eq(43) to
. compute the kinetic energy, we obtain the tdfB), in which
(Ylbybyb,bsl) = N1 NN = 1), Yjph, (8" - )72, Tem={(Tcm) and the desiredT’) are mixed. This leads to a

(A2) spurious increase in the estimate of the kinetic energy and
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consequently the total energy, as shown in Table Il. Since weélubbard hopping parametér,,, can be extracted fror,
know the nature of the c.m. motion, it is fairly straightfor-

ward to extractT, ,, and explicitly subtract it from the ki- te.m. = b/2. (B4)
netic and total energy estimates. Allowing the droplet to

L o . . This giv h rrect kinetic an | energi
freely slide in the calculation is equivalent to having a spu- S gives us the correct kinetic and total energies,

rious “propagator’e2Tem, whose effect on the wave func- ~ tem. | 2
tion for the c.m. is described by the diffusion equation (T)=\1 Tt M, (B5a)
d \Pc.m.(R, 7)

= :rc.m.‘Pc.m.(RaT)-
JT

(H'Y= (T + (Vag). (B5b)

It is a well known proper.ty of such a diﬁusiqn process that  To conclude, there are two necessary modifications in the
the averaged squared distan@®?(7)) grows linearly with  QMC algorithm in order to treat quantum droplets.

the (imaginary time 7, (i) We let the trial wave function effectively “follow” the
(R%(7) = br QMC orb@tals, by defining its c.m. according to that of each
' QMC orbital.
We can obtainb by recording the quantitfR?(7)) for a (i) For each orbital, we accumulate all the applied c.m.

period of time in the QMC simulation. The constantis  Shifts in order to estimatéR?(7)). This gives us the fraction
linearly proportional toT. . More specifically, the c.m. of c.m. kinetic energy through the constapn,.
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